Instructions for objconv

A utility for cross-platform development of function libraries, for converting
and modifying object files and for dumping and disassembling object and
executable files for all x86 and x86-64 platforms.

Version 2.49. By Agner Fog © 2018.
GNU General Public License.

Contents
3 1 o [T o T o PSRRI 2
L. Il Y PES ettt 3
2 ComMMANd [INE SYNEAX .. .cciiiiiiiiiiiie et e e e e e e e e e e e e ettt e e e e e e e e eereaa s 4
RNV TaaT o Jr= Ta o =14 (o] aoTo] o110 S 6
4 Converting file FOMMEALSuuuiiiii e 6
5 MOAITYING SYMIDOIS ...ttt nnnnne 7
6 MaNAGING IDFAMES ... e e e e e e e e e e e et e e e e e e e e e arra s 8
7 DUMPING FIES ettt 10
8 DiSASSEMDIING TIIES......eeiiiiiiiiiieie ettt 10
8.1 How to interpret the disassSemblYccooooiiiiiiiiiiii e 11
8.2 Compatibility PrODIEMIS.. ... e e 13
8.3 Using the disassembler for checking machine code.............ccoooeeiii, 14
8.4 Assembly syntax for AVX-512 and Knights Corner instructionscccccevvvvnennn. 14
9 Converting assembler-generated fileScooii i 16
10 Converting compiler-generated fileSoooviiiiiiiiiiiiiiii 18
10.1 Call stubs for 64-bDit CONVEISIONSuuuiiiieeiiiieiiieee e e e e e e e e e e e e aeeeanee 20
11 Frequently asked QUESTIONS.........ciii i it e e et e s e e e e e e e e at e e e e e aeeeanees 22
11.1 Why is there no graphical user interface?ccccuuumimiiiiiiiiiiiiiieeees 22
11.2 What kind of files can ObJCONV CONVEIT?uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiieeeeeeeeaenees 22
11.3 Is it possible to convert files for ARM?ooiiiiiiiii e 23
11.4 Is it possible to convert files for PPC or other architectures?...........ccccceveeeeeeeeeeniennns 23
11.5 Is it possible to link converted files into Borland Delphi Pascal?...............cccccvvennnes 23
11.6 Can | convert an executable file from one system to another?...........ccccceeeeeeeiiiinns 23
11.7 Can | convert from 32 bit code to 64 bit COUE?uuuurriiiriiiiiiiiiiiiiiiiiiiiiiiieeianaees 23
11.8 Can | convert a dynamic link library to another system?..............ccccvvvieviiiiiiiiiiiinnnnns 23
11.9 Can | build a function library that works in all operating Systems?............ccccccuvvvnnns 23
11.10 Why can't | convert an export library?ieiiiiiiiiicc e 23
11.11 Can | convert a static library to a dynamic library?ccccccvemiiimiiiiiiiiiiiiiiinnnnns 24
11.12 Can | convert a dynamic library to a static library?ccccccvvmeiiiiiiiiiiiiiiiiiiinnnns 24
11.13 Can | convert a Windows function library to use it under LinUX?...........ccccoeeeevrenni. 24
11.14 Can | convert a Linux function library to use it under Windows?.................cccooeee. 24
11.15 | want to know which library contains a particular functioncccccvvvvveiennnns 24
11.16 How do | know if my Linux function uses the red zone?cccccvvveviiiviiiinninnnnns 24
11.17 How do | know if my Linux function has position-independent code....................... 24

11.18 | have problems porting my Windows application to Linux because the Gnu
compiler has a more strict syntax. Can | convert the compiled Windows code instead?.. 25

11.19 Is it possible to extract one or more functions from a binary file or program? 25
11.20 Is it possible to convert mangled function NAMES?eviiiiiiiiiiiiii e 25
11.21 Is it possible to convert function calling conventions automatically?...................... 25
11.22 Does the disassembler have an interactive feature?..............ccccovevviniiiiniininninnnnns 25
11.23 Is it possible to disassemble an executable file to modify it and then assemble it
BGAIN 2 oo 25
11.24 Is it possible to disassemble an object file and fix all compatibility problems
=V 11 = Y2 26
11.25 Is it possible to reconstruct C++ code from a disassembly?cccccvvviiiininnnnns 26
11.26 Why do | get error messages in the disassembly file?.............cccooviiiiiiiiiiiiiiiinnnns 26

11.27 How does the disassembler distinguish between code and data?......................... 26

11.28 Can | disassemble BYIE COUB?ouuviiii i e e e e aaaees 27

11.29 Can | assemble the output of the disassembler?...........ccccoveeiiiiieiiiiiiiie e, 27
11.30 Why does the disassembler not support AT&T SYNtax?eeevevmmmmmmmimmmnninnnnns 27
11.31 How can | convert assembly SYNtax?uuuuuimiimiimiiiiiiiiiiiiiiiiiiiiieeeeeeees 27
11.32 Why does my disassembly take S0 1oNg tiMe?ccovvviiiiiiiiiiee e 27
11.33 How can | save the output of the dump screento afile?ccoovvveviiiiiiieeenniinnnn, 27
11.34 Can you help me with my problemS? ... 27
11.35 Are there any alternatives to ObJCONV?ooviiiiiiii i 28
12 Warning and ©rrOr MESSAGES ..vvuuueieeeeeieieiiiiiteeeeeeeeaatiaaaaaeaatesatttaaaaeaaeeersnrraaaaaaaeeennnes 28
2 R IR T =T 1 o] £ S SRRPRPRRRIN 29
RS S Yo U] o= oo o [SRR 30
13.1 Explanation of the 0bjconv SoUrce COde............uuuiiiiiiiiiiiiiiiie e 30
13.2 How to add support for new file formats.................eeuuuimiiiiiiiieiiiiees 32
13.3 How to add features to the disassemblerccoooi i 32
L1304 IR TIST ..ttt 33
13,5 CIASS ST ..ttt e 34
I I =To oL o) (o = PP P PP PP PPPPPPPPPPPP 37

1 Introduction

Objconv is a utility for facilitating cross-platform development of function libraries, for
converting and disassembling object files, and for other development purposes. The latest
version of objconv is available at www.agner.org/optimize.

Objconv can perform the following tasks:

e Convert object files between different formats used on different x86 and x86-64
platforms.

¢ Change symbol names in object files.

¢ Build, manage and convert static link libraries in various formats for different x86 and
x86-64 platforms.

¢ Dump file headers and other contents of object files, static and dynamic library files,
and executable files.

e Disassemble object files and executable files and check instruction code syntax.
The following platforms are supported:

e Windows, 32 and 64 bit x86.

e Linux, 32 and 64 bit x86.

e BSD, 32 and 64 bit x86.

e Mac OS X, 32 and 64 bit x86 (Darwin, Intel based).

The latter three platforms are all based on the UNIX heritage. | will use "Unix" as a common
name for Linux, BSD and Mac on x86 an x86-64 platforms in this manual.

The source code for objconv can be compiled and run under any of these platforms. The
program is compatible with standard make utilities.

Note that objconv is intended for programming experts. It is far from fool proof, and you
need to have a very good understanding of how compilers and linkers work in order to use
2

http://www.agner.org/optimize

this program. Please do not send your programming gquestions to me - you will not get any
answer.

1.1 File types

An executable file is a file containing machine code that can be executed. This can be a
program file or a dynamic link library, also called shared object. The name shared object is
used only in Unix-like systems, such as Linux, BSD and Mac OS X.

An object file is an intermediate file used in the building of an executable file. It contains part
of the code that will make up the final executable file. An object file usually contains cross-
references to functions in other object files.

A static link library means a collection of object files. This is called a static linking library file
in Windows terminology or an archive in Unix terminology. | prefer to use the name library
because an archive can also mean a .zip or .tar file.

Objconv cannot modify or convert executable files, including dynamic link libraries or shared
objects, but it can dump or disassemble such files.

The following table summarizes the type of operations that objconv can do on various file
types:

File type and Word Exten-| Operating Convert| Convert| Modify | Dump Disas-
format size, bits sion | system from to semble
Object file 32,64 .obj Windows X X X X X
COFF/PE

Library file 32,64 lib Windows X X X X X
COFF/PE

DLL, driver 32,64 dll, Windows - - - X X
COFF/PE .Sys

Executable file 32,64 .exe | Windows - - - X X
COFF/PE

Object file 16 .obj DOS, Win- - - - X X
OMF dows 3.x

Object file 32 .obj Windows X X X X X
OMF

Library file 16 lib DOS, Win- - - X X X
OMF dows 3.x

Library file 32 Jib Windows X X X X X
OMF

Executable file 16 .exe DOS, Win- - - - - -
16 bit dows 3.x

Object file 32,64 .0 Linux, BSD X X X X X
ELF

Library file 32,64 .a Linux, BSD X X X X X
ELF

Shared Object 32,64 .SO Linux, BSD - - - X X
ELF

Executable file 32,64 Linux, BSD - - - X X
ELF

Object file 32,64 .0 Mac OS X X X X X X
Mach-O

Library file 32,64 .a Mac OS X X X X X X
Mach-O

Shared object 32,64 .SO Mac OS X - - - X X
Mach-O

Executable file 32,64 Mac OS X - - - X X
Mach-O

Universal 32, 64 Mac OS X - - - X X

3

| binary

2 Command line syntax

If you want to run objconv under one of the Unix systems (Linux, BSD, Mac), then you have
to first build the executable. Unpack source. zip to a temporary directory and run the build
script build. sh. To run objconv under Windows, you can just use the executable
objconv.exe.

Objconv is executed from a command line or from a make utility. The syntax is as follows:
objconv options inputfile [outputfile]

Options start with a dash -. A slash / is accepted instead of - when running under
Windows. Options must be separated by spaces. The order of the options is arbitrary, but all
options must come before inputfile. The name of the output file must be different from
the input file, except when adding object files to a library file. The option letters are case
insensitive, file names and symbol names are case sensitive.

The return value from objconv is zero on success, and equal to the highest error number in
case of error. This will stop a make utility in case of error messages, but not in case of
warning messages.

Summary of options

- XXX Convert file to format Xxx. XXX = COFF, OMF, ELF Or MAC.
PE is accepted as a synonym for COFF. The word size, 32 or 64, may be
appended to the name, e.g. ELF64.

-fasm Disassemble file. Variants for different assembly syntax dialects:
—fmasm, —~ftasm, —~-fnasm, —~fyasm, —~-fgasm.

-dXXX Dump contents of file. xxx can be one or more of the following:
f£: file header, h: section headers, s: symbol table,
r: relocation table, n: string table (all names).

-XS Strip exception handling information and other incompatible info. (Default
when converting to a different format).

-Xp Preserve exception handling information and other incompatible info.

-nu Change leading underscores on symbol names to the default for the target
system.

-nu- Remove leading underscores from symbol names.

-nu+ Add leading underscores to symbol names.

-au- Remove leading underscores from public symbol names and keep old names
as aliases.

—au+ Add leading underscores to public symbol names and keep old names as
aliases.

-nd

-nr:N1

-np:N1

-ns:N1

-ar:N1

-—ap:N1
-as:N1

-nw:N1

-nl:N1
-1x

-1x:N1

-la:N1

-1d:N1

-1s

-v0

-vl
-v2
—wdXXX
—weXXX
—edXXX

—ewXXX

N2

N2

N2

N2

N2

N2

N2

N2

Replace leading dot or underscore in section names with the default for
the target system.

Replace name N1 with N2. N1 may be a symbol name, section name
or library member name.

Replace symbol prefix N1 with N2. N1 may be the beginning of a symbol
name or section hame.

Replace symbol suffix N1 with N2. N1 may be the end of a symbol name or
section name.

Give public symbol N1 an alias hame N2. The same symbol will be
accessible as N1 as well as N2.

Replace symbol prefix N1 with N2 and retain the old name as an alias.
Replace symbol suffix N1 with N2 and retain the old name as an alias.

Make public symbol N1 weak. Only possible for ELF files and 64-bit Mach-O
files.

Make public or external symbol N1 local (invisible).

Extract all members from library inputfile to object files.

Extract member N1 from library and save it as object file N2. The name
of the object file will be N1 if N2 is omitted. May use | instead of : as

separator.

Add object file N1 to library and give it member name N2. The member
name will be N1 if N2 is omitted. May use | instead of :.

Delete member N1 from library.

Shorten long library member names. There are several different ways of
storing member names longer than 15 characters in a library file. This option
makes sure that no names are longer than 15 characters. This improves
compatibility with all linkers, including BSD systems.

Silent operation. No output to console other than warning and
error messages.

Verbose. Output basic information about file names and types (Default).
More verbose. Tell about conversions and library operations.

Disable warning number XxX.

Treat warning humber XXX as an error.

Disable error message number XXX.

Treat error number XXX as warning.

-imagebase=xxX Specify desired image-base as a hexadecimal number. (Only

5

used if converting incompatible relocation types).
QRFILE Read additional command line parameters from response file RFTLE.

-h Help. Print list of options.

Command line parameters can be stored in a response file. This can be useful if the
command line is long and complicated. Just write @ followed by the name of the response
file. The contents of the response file will be inserted at the place of its name.

Response files can be nested, and there can be a maximum of ten response files.

Response files can have multiple lines and can contain comments. A comment starts with #
or // and ends with a line break.

3 Warning and error control

Objconv can be called from a make utility. The make process will stop in case of an error
message but not in case of warning messages. It is possible to disable specific error
messages (-edxxx), to convert errors to warnings (-ewxxXx) and to convert warnings to
errors (-weXxx).

It is possible to disable error number 2005 is you want the input file and output file to have
the same name. It is possible to disable error number 2505 if you want to mix object files
with different word sizes in the same library.

4 Converting file formats

An object file can be converted from one format to another by specifying the desired format
for the output file. The format of the input file is detected automatically. For example, to
convert the 32-bit COFF file filel.obj to ELF:

objconv -felf32 -nu filel.obj filel.o
The name of the output file will be generated, if it is not specified, by replacing the extension
of the input file with the default extension for the target format. The name of the output file

must be different from the input file.

It is recommended to always use the -nu option. This makes objconv add or remove
leading underscores on symbol names if required.

The output file will always have the same word size as the input file. It is not possible to
change e.g. from 32-bit to 64-bit format.

A library is converted in the same way as an object file:

objconv -felf32 -nu filel.lib filel.a
Debug information and exception handling information is removed from the file, by default, if
the format of the output file is different from the input file. It is recommended to remove this

information because it will be incompatible with the target system. Objconv does not include
a facility for converting this information to make it compatible.

6

Further instructions on converting assembler-generated and compiler-generated object
code are given below in chapter 9 and 10.

5 Modifying symbols
It is possible to modify the names of public and external symbols in object files and libraries

in order to prevent name clashes, to fix problems with different name mangling systems,
etc.

Note that symbol names must be specified in the way they are represented in object files,
possibly including underscores and name mangling information. All names are treated as
case sensitive. Use the dump or disassembly feature to see the mangled symbol names.
To change the symbol name namel to name2 in object file filel.ob7:

objconv -nr:namel:name?2 filel.obj file2.obj
The modified object file will be £ile2.ob7. Objconv will replace namel with name?2
wherever it occurs in public, external and local symbols, as well as section names and
library member names. All names are case sensitive.
It is possible to give a function more than one name. This can be useful for supporting
multiple naming conventions with the same object or library file. Only public (exported)
symbol names can have aliases. It is not possible to assign an alias to an external
(imported) or local symbol. To give the function named functionl the alias function?2:

objconv -ar:functionl:function?2 filel.obj file2.obj

Some file formats have symbol names prefixed by an underscore () while other file
formats have no prefix on symbol names. Use option -nu to change the prefix to the
default for the target file format when converting from one format to another:

objconv -felf -nu filel.obj file2.o
Use option -nu- or —-nu+ to explicitly add or remove underscores on all symbol names.

You can specify any prefix to change or remove. For example, to remove prefix wWin from
all function names beginning with Win :

objconv -np: Win : filel.obj fileZ2.ob]

Likewise, you can modify all function names with a certain suffix. For example, to remove
suffixes @4, @8 and @12 from all function names:

objconv -ns:@4: -ns:@8: -ns:@12: filel.obj file2.obj

You can keep the old names as aliases when modifying the prefix or suffix of function
names. For example, to make a callable alias for Intel CPU-specific functions with suffix .R:

objconv -as:.R: AVX: filel.obj fileZ.ob]

No more than one operation can be specified for the same symbol name. For example, you
cannot remove an underscore from a name and make an alias at the same time. You have
to run objconv twice to so. For example, to convert COFF file filel.obj to ELF, remove
underscores, and make an alias:

objconv -felf32 -nu filel.obj filel.o
objconv -na:functionl:function2 filel.o file2.o0

Likewise, you have to run objconv twice to make two aliases to the same symbol.

It is possible to make a public symbol weak in ELF and Mach-O files. A weak symbol has
lower priority so that it will not be used if another public symbol with the same name is
defined elsewhere. This can be useful for preventing name clashes if there is a risk that the
same function is supplied in more than one library. Note that only the ELF and Mach-O file
formats supports this feature. To make public symbol functionl weak in ELF file
filel.o:

objconv -nw:functionl filel.o file2.o0

COFF and OMF files have a different feature called weak external symbols. This is not
supported by objconv.

Objconv can hide public symbols by making them local. A public symbol can be made local
if you want to prevent name clashes or make sure that the symbol is never accessed by any
other module. To hide symbol DontUseMe in COFF file filel.ob7:

objconv -nl:DontUseMe filel.obj file2.o0bj

It is also possible to hide external symbols. This can be used for preventing link errors with
unresolved externals. The hidden external symbol will not be relocated. Note that it is
dangerous to hide an external symbol unless you are certain that the symbol is never used.
Any attempt to access the hidden symbol from a function in the same module will result in a
serious runtime error.

All symbol modification options can be applied to libraries as well as to object files.

6 Managing libraries

A function library (archive) is a collection of object files. Each member (object file) in the
library has a name which, by default, is the same as the name of the original object file.

All libraries contain a symbol index in order to make it easier for linkers to find out which
member contains a particular function. Objconv will always remake the symbol index and
remove the path from member filenames whenever a library file is modified.

Objconv can add, remove, replace, extract, modify or dump library members.

Rebuilding a library

Rebuilding a library will remove any path from member names, change the member name
extension to . ob7j for COFF and OMF files, or . o for ELF and Mach-O files, and rebuild the
symbol table. Example rebuilding library mylib.1ib:

objconv mylib.lib mylib2.1ib

Converting a library
To convert library mylib.11ib from COFF to ELF format:

objconv -felf mylib.lib mylib.a

Building a library or adding members to a library
To add ELF object files filel.oand file2.otolibrarymylib.a:

objconv -la:filel.o -la:file2.0 mylib.a
or alternatively:
objconv -1lib mylib.a filel.o fileZ2.o

The alternative -1 ib syntax is intended for make utilities that produce a list of object files
separated by spaces. The library mylib.a will be created if it doesn't exist.

If you want to preserve the original library without the additions then give the new library a
different name:

objconv -la:filel.o -la:file2.o0 mylib.a mylib2.a

Any members of the old library with the same names as the added object files will be
replaced. Members with different names will be preserved in the library.

Any specified options for format conversion or symbol modification will be applied to the

added members, but not to the old members of the library.

Removing members from a library
To delete member £ilel.o from library mylib.a:

objconv -1ld:filel.o mylib.a mylib2.a

Extracting members from a library
To extract object file filel.o from library mylib. a:

objconv -1x:filel.o mylib.a
Any path of the original filename is ignored or removed by objconv. To extract library
member C:\some\very\long\path\filel.obj from library mylib.1ib and store it as
mypath\filel.ob7j:

objconv -1x:filel.obj:mypath/filel.obj mylib.1lib
You may use | instead of : as separator if the output path contains a colon:

objconv -1x|filel.obj|C:/mypath/filel.obj mylib.lib
To extract all object files from library mylib.1ib:

objconv -1lx mylib.lib

Any specified options for format conversion or symbol modification will be applied to the
extracted members, but the library itself will be unchanged.

No more than one option can be specified for each library member. For example, you can't
extract and delete the same member in one operation.

Modifying library members
To rename library member filel.oto file2.oinlibrarymylib. a:

objconv -nr:filel.o:file2.0 mylib.a mylib2.a
To rename symbol functionl to function?2 inlibrary mylib. a:
objconv -nr:functionl:function2 mylib.a mylib2.a
Any symbol modification option specified will be applied to all library members that have a

symbol with the specified name.

Dumping library contents
To show all members and their public symbol names in library my1lib. a:

objconv -d mylib.a
Note that the member names shown are the names before conversion. All other commands
use the member names after any path has been removed. See section 11.15 for how to list
the contents of multiple libraries.
To show the complete symbol list of member filel.oinlibrarymylib.a:

objconv -dhs -1x:filel.o mylib.a

To show all symbols in all members of library mylib. a:

objconv -dhs -1x mylib.a

7 Dumping files
Objconv can dump file headers, symbol tables, etc. for various types of files. For example,
to dump the file header, section headers and symbol table of filel.obj:

objconv -dfhs filel.obj

8 Disassembling files

Objconv can disassemble object files, executable files, etc. For example, to disassemble the
dynamic link library filel.d11 to NASM syntax:

objconv -fnasm filel.dll filel.asm

To disassemble a static library file (*.1ib, *.a) you must first extract the individual library
members and then disassemble each member separately.

Three different syntax dialects are supported:

10

1. MASM/TASM. Used by Microsoft and Borland assemblers. This is the most common
syntax used in manuals etc. Windows compilers can generate output in this format.
Command line option -fasm or -fmasm Or —ftasm.

2. GAS. Used by the Gnu compiler and assembler. Only the Intel syntax sub-version is
supported. Use this for inline assembly with the gcc or g++ compiler. Command line
option -fgasm.

3. NASM/YASM. Used by NASM and YASM. These are free assemblers with support
for multiple platforms. This syntax is more logical and consistent than the other
dialects, but with fewer options. Command line option -fnasm or —-fyasm.

The output file is written in such a way that it can be assembled again with the appropriate
assembler. Possible problems with re-assembling the file are discussed below.

The disassembler supports the full instruction set for all 16-, 32- and 64-bit x86 Intel, AMD
and VIA processors, including the Intel SSE, AVX, AVX2, AVX512F/VL/BW/DQ/CD/IFMA/
VBMI, FMA3, BMI1, BMI2, etc., AMD XOP, FMA4 and TBM instructions, VIA instructions,
privileged instructions, the Intel Knights Corner instruction set, known undocumented
instructions, and preliminary instruction codes that were never implemented because of
changed plans (e.g. SSEb), totaling approximately 2000 instructions.

The quality of the disassembly depends on the amount of information contained in the input
file. Object files generally contain more information about symbol names, types, etc. than
executable files do. COFF and ELF files contain more symbol names than OMF and Mach-
O files do.

The disassembler analyzes the code in order to determine the type of each data item, to
guess where each function begins and ends, to identify import tables, switch/case jump
tables, virtual function tables, etc. Nevertheless, the disassembler may in difficult cases
misinterpret data as code or fail to determine the type of a data item. When the
disassembiler is in doubt whether something is code or data, it will show it as both.

In simple cases, the quality of the disassembly may be good enough for making
modifications in an object file or for extracting a single function from a dynamic link library.
The disassembly of an executable file is unlikely to be good enough for remaking a fully
working executable, but it may be good enough for identifying problems in the code.

8.1 How to interpret the disassembly

The following example shows what a piece of disassembled code may look like (32-bit
Windows, MASM syntax):

_text SEGMENT PARA PUBLIC 'CODE' ; section number 1

?testb@E@YAHHQRZ PROC NEAR

mov eax, dword ptr [esp + 04H] ; 0000 _ 8B. 44 24, 04
; Note: Memory operand is misaligned
mov ecx, dword ptr [?alpha@@3HA] ; 0004 _ 8B. 0D, 00000000 (d)
add ecx, eax ; 000A 03. C8
push ecx ; 000C _ 51
call ?testa@@YAHHRZ ; 000D E8, 00000000 (rel)
add esp, 4 ; 0012 83. Cc4, 04
mov ecx, offset ?1istl1@@3PAHA ; 0015 B9, 00000000 (d)

; Filling space: 06H

; Filler type: lea with same source and destination
; db 8DH, 9BH, O0OH, O0OOH, 00H, O00H
ALIGN 8

? 001: add eax, dword ptr [ecx] ; 0020 _ 03. 01
add ecx, 4 ; 0022 _ 83. C1, 04
cmp ecx, offset ?1istl1@@3PAHA + 00001000H ; 0025 81. F9, 00001000 (d)
J1 2 001 ; 002B _ 7C, F3
ret ; 002D _ C3

11

?testb@E@RYAHHQRZ ENDP
_text ENDS

This code can be interpreted as follows:

The name 2testb@E@YAHHEZ is the name of the function int testb (int x) asitis
mangled by the Microsoft C++ compiler. The disassembler does not translate mangled
names to C++ names for you. The MASM assembler allows the characters 2 @ $ in
symbol names.

Line 0000 is the first instruction of the function testb. It reads the parameter x from the
stack into register eax. Line 0004 reads a value from a variable in the data segment into
ecx. The name ?alpha@@3HA is a mangled name for int alpha. The note indicates
that alpha is not optimally aligned. Such notes always apply to the instruction that follows.
Line 000A adds the value of x in eax to the value of alpha in ecx. Line 000C pushes this
value on the stack as a parameter to the following function call. Line 000D is a call to
function int testa (int) with a mangled name. The return value is in eax. Line 0012
cleans up the stack after the function call. Line 0015 loads the address of ?1ist1@E@3PAHA
into ecx. This is the mangled name of an array int listl[].

Next comes a multi-byte nop for aligning the subsequent loop entry. The compiler has used
lea ebx, [ebx+00000000H] instead of 6 nop instructions for filling 6 bytes. The
disassembler has written the exact byte sequence as a comment. This may be
uncommented to recover exactly the same code, but in general it is preferred to use the
align directive instead. The disassembler cannot know whether the desired alignment is 8
or 16 if there are less than 8 bytes up to the next 16-bytes boundary.

Line 0020 is a loop entry with the label > 001. The input file does not indicate a name for
this label. Therefore the disassembler has assigned the arbitrary name > 001. Subsequent
nameless code and data labels will be named 2 002, etc.

The first line in the loop reads an integer from the address that ecx points to, i.e. an
element from array 1ist1, and adds it to eax. Line 0022 adds 4, which is the size of each
array element, to ecx in order to make it point to the next array element.

Line 0025 compares ecx with the address of the end of the array. Line 0028 reads the
flags from the preceding cmp instruction and jumps back to the top of the loop if the end of
the array has not been reached. Line 002D returns from function testb. The return value is
in eax.

This code could be translated back to C++:

int testa(int x);
int 1ist1[10247];
int alpha;

int testb(int x) {
int y = testa(x + alpha);
for (int i=0; i<1024; i++) y += listl[i];
return y;

}

The comments to the right of the disassembly code are interpreted as follows. The four
digits after the semicolon is the hexadecimal address of the instruction. This is actually a 32-
bit value, but in this case the disassembler has saved some space by using only 4
hexadecimal digits. It will show 8 hexadecimal digits if necessary, but not more. Addresses
higher than 232 will be shown only as the least significant 8 hexadecimal digits.

12

After the underscore comes the instruction code as hexadecimal bytes. The delimiters : . ,
separate the different parts of the instruction code.

The text in parenthesis after the binary code indicates various types of cross-references,
using the following abbreviations:

Abbreviation Cross reference type
d Direct address. The absolute virtual address of target is inserted
rel Self-relative address
imgrel Image-relative address
segrel Address is relative to a segment or group
refpoint Address is relative to an arbitrary reference point
indirect To Gnu indirect function dispatcher
seg A segment address or segment descriptor
sseg Only the segment part of a far target address is inserted
far Offset and segment of a far target address
GOT Global offset table entry
GOTr Self-relative address of global offset table entry
PLTr Self-relative address of procedure linkage table entry

The information about cross-reference types is usually obtained from relocation tables in the
input file. The disassembler will attempt to reconstruct missing cross-reference information,
if possible, in the case of executable files without relocation tables.

8.2 Compatibility problems

Even though the goal has been to make the disassembly output fully compatible with the
specified assembler, there are still some possible compatibility problems. The following
types of problems may occur when re-assembling disassembled code:

e Unsupported relocation types. The original file may contain relocation types not
supported by the assembler. Image-relative relocations are supported only by
MASM. Relocations relative to an arbitrary reference point are supported only by the
Macintosh version of the Gnu assembler (which currently doesn't support the Intel
syntax variant). Relocations to a global offset table (GOT), procedure linkage table
(PLT) or other import tables are only partially supported by the disassembler. The
type of relocation is indicated in the comment only, not in the instruction. The GOT,
PLT, import tables, etc. are shown as data if contained in the input file.

¢ Nonstandard segment names. Most assemblers have little or no support for code
segments with nonstandard names.

e Nonstandard segment attributes. Most assemblers have little or no support for
specifying segment attributes such as executable, writeable, zerdfill, etc.

¢ Nonstandard segment alignment. MASM sets the alignment for _text and _data to 16
in 64 bit mode or if . xmm is specified, and 4 if . xmm is not specified. If the default
alignment does not fit your purpose then append a $-sign and something to the
segment name, e.g. text$align32 and specify the desired alignment.

e Special characters in function names. The following special characters are allowed
in identifiers: NASM/YASM: s@2.~#, Gas: .$, MASM: s5@2. ("."onlyinthe
beginning of a name). The disassembler will count names containing illegal
characters and write a notice in the beginning of the file.

13

e Exception handling information and debugging information. This information is
shown only as data. The appropriate directives are not inserted in the code. Use
option -xs to remove exception handling and debugging information.

¢ Communal code and data. This will be converted to public when re-assembled. A
comment is inserted in the disassembly file indicating communal code or data.

¢ Newer instruction sets. The disassembler supports the newest instruction sets
currently available. The assembler may not support the same instruction sets. The
NASM assembler is often the first to support new instruction sets.

o Executable files. Executable files and dynamic link libraries or shared objects contain
import tables and other information that will not survive a disassembly and re-
assembly. It may be possible to recover individual functions from an executable file
but not the entire program.

8.3 Using the disassembler for checking machine code

The disassembler does an almost complete syntax check of the code. This can be useful for
debugging purposes and for testing compilers and assemblers during development. For
example, it will write an error message in the output file if there is a memory operand on an
instruction that allows only register operands. Less serious errors, such as redundant
prefixes, are written as "Note" rather than "Error".

The disassembler also checks for some cases of suboptimal code, for example unaligned
memory operands, length-changing prefixes, and instructions that could have been coded in
a shorter form.

The disassembler does not check for programming errors, such as for example a push that
doesn't have a matching pop.

A note or error message does not necessarily indicate an error in the compiler that built the
code. Compilers may sometimes have good reasons for coding an instruction in an
apparently suboptimal form. Error messages typically occur when the compiler has placed
data in a code segment and the disassembler has failed to identify this as data. Another
possible cause of errors is misplaced labels caused by address calculations that the
disassembler has failed to trace correctly. It is very unlikely that the error messages you see
are caused by bugs in the compiler.

8.4 Assembly syntax for AVX-512 and Knights Corner instructions

The disassembler supports the instruction set for the AVX-512 instructions and the
instruction set for Intel "Many Integrated Core" (MIC) coprocessor codenamed Knight's
Corner. See Intel manuals. These two instruction sets are very similar, but have different
optional instruction attributes. Instructions from these two instruction sets differ by a single
bit in the prefix, even for otherwise identical instructions.

These instruction sets extend the size of vector registers to 512 bits. The number of vector
registers is extended to 32 vector registers named zmmO0 - zmm31 in 64-bit mode. Only
zmmO - zmm7 are available in 32-bit mode. The new instructions have many new attributes
for masked operations, broadcast, rounding mode, suppression of exceptions, type
conversion, permutation, and cache eviction hint.

These instruction sets are not yet supported by all assemblers (December 2014), and the
assembly syntax details have only been defined for the NASM assembiler. It is therefore
useful to specify the used syntax here. The syntax described below is used in the
disassembler.

14

512 bit memory operand size specifier: MASM and GAS syntax: zmmword, NASM syntax:
zword.

Masked operation: {kn}, where kn = k1, k2, ... k7 is the mask register. This attribute is
written after the destination operand. This may be omitted for {k0}. The disassembler
writes {k0} explicitly only if the kO register is modified by the instruction. A mask register
used for other purposes is written like a normal operand without curly brackets.

Broadcast for memory operand: { 1to8} etc. Written after the memory source operand.
Rounding mode: {rn} etc. Written after a comma after the last SIMD operand.

Suppress all floating point exceptions: {sae}. Written after a comma after the last SIMD
operand.

Rounding mode and sae may optionally be combined: {rn-sae}.

The AVX-512 and Knights Corner instructions apply a multiplier to the address offset of
memory operands with a pointer register and a one-byte offset. This multiplier is usually the
same as the actual size of the source operand before any broadcast or conversion or the
destination operand after any conversion, with masks ignored. The disassembler writes the
total offset as the product of the offset byte and the multiplier to show how the value is
calculated, for example:

vaddps zmml {k2}, zmm3, dword [rsi+12H*4H] {1tol6}

An assembler should accept the total offset as well (e.g. [rsi+48H]) and use a 32-bit
offset without multiplier in case the specified offset is not divisible by the multiplier.

Attributes available only with AVX-512 instructions:

Zeroing: {z} written after the destination register and after the mask specifier.

Attributes available only with Knights Corner instructions:

Cache eviction hint: {eh}. Written after the memory operand.

Type conversion: {uint16} etc. Written after the source or destination memory operand.
Note that the specified operand size applies to the actual size of the converted memory
operand with masks ignored.

Broadcast for register operand: {aaaa} etc. Written after the register source operand.

Permutation (swizzle): {cdab} etc. Written after the register source operand.

An extra comma is inserted only between the last operand, and attributes that do not apply
to a specific operand, i.e. rounding mode and suppress-all-exceptions.

Multiple attributes on the same operand are written in separate curly brackets, for example:
vaddpd zmm30 {k3}{z}, zmmlO, zmm8 ; AVX512 instruction
vmovdga32 yword [rdi] {kl} {sintl6} {eh}, zmm2 ; KNC instr.

Rounding mode and suppress-all-exceptions may be considered separate attributes written
in separate curly brackets, or one combined attribute. For example:

15

vaddps zmmlO {k4}, zmm20, zmm30, {rn} {sae}
or
vaddps zmmlO {k4}, zmm20, zmm30, {rn-sae}

The disassembler currently uses the combined syntax.

9 Converting assembler-generated files

Objconv makes it possible to develop multi-platform function libraries from a single
development platform. The code can be compiled or assembled on one platform and the
resulting object or library files can then be converted to different file formats for different
platforms.

It is preferred to make static libraries (* . 1ib, * . a) rather than dynamic link libraries or
shared objects (*.d11, *.so). Shared objects in Unix systems require position-
independent code that can cause compatibility problems.

It is recommended to use assembly code rather than C or C++ in order to avoid any
platform-specific or compiler-specific constructs. Things that can go wrong when converting
compiler-generated code are summarized on page 18 below.

The differences in calling conventions etc. are described in detail in my manual 5: "Calling
conventions for different C++ compilers and operating systems". www.agner.org/optimize.

My manual 2: "Optimizing subroutines in assembly language" explains how to make function
libraries that are compatible with multiple platforms. (www.agner.org/optimize).

32-bit code

The calling conventions and register usage conventions are the same on all 32-bit x86
platforms. This makes it easy to use the same code on different platforms. Differences that
have to be dealt with are:

e Underscore prefixes. Function names and variable names get an underscore prefix
in 32-bit COFF, OMF, and MachO files, but not in ELF. Objconv will automatically
add or remove underscores, as required, with the —nu option.

e Function calling convention. The most common calling convention in 32-bit mode is
~_cdecl. Windows DDL's also use stdcall. Some Windows compilers use
__thiscall for class member fu