
Cheetah Users’ Guide
Release 0.9.16a1

Edited by Mike Orr and Tavis Rudd

January 6, 2005

cheetahtemplate-discuss@lists.sourceforge.net

Contents

1 Introduction 5
1.1 Who should read this Guide?. 5
1.2 What is Cheetah?. 5
1.3 What is the philosophy behind Cheetah?. 5

Why Cheetah doesn’t use HTML-style tags. 6
1.4 Give me an example!. 6
1.5 Give me an example of a Webware servlet!. 7
1.6 How mature is Cheetah?. 8
1.7 Where can I get news?. 8
1.8 How can I contribute?. 9

Bug reports and patches. 9
Example sites and tutorials. 9
Template libraries and function libraries. 9
Test cases. 9
Publicity . 9

1.9 Acknowledgements. 9
1.10 License . 10

2 Vocabulary 11

3 Getting Started 12
3.1 Requirements. 12
3.2 Installation . 12
3.3 Files . 12
3.4 Uninstalling . 12
3.5 The ’cheetah’ command. 12
3.6 Testing your installation . 13
3.7 Quickstart tutorial. 14

4 How Cheetah Works 16
4.1 Constructing Template Objects. 16
4.2 “cheetah compile” and .py template modules. 17
4.3 “cheetah fill” . 19
4.4 Some trivia about .py template modules. 20
4.5 Running a .py template module as a standalone program. 20
4.6 Object-Oriented Documents. 20

5 Language Overview 22
5.1 Language Constructs – Summary. 22
5.2 Placeholder Syntax Rules. 24
5.3 Where can you use placeholders?. 25
5.4 Are all those dollar signs really necessary?. 25
5.5 NameMapper Syntax. 26

Example. 26
Dictionary Access. 27
Autocalling . 27

5.6 Namespace cascading and the searchList. 28
5.7 Missing Values . 28
5.8 Directive Syntax Rules. 29

Directive closures and whitespace handling. 29

6 Comments 32
6.1 Docstring Comments. 32
6.2 Header Comments. 33

7 Generating, Caching and Filtering Output 34
7.1 Output from complex expressions: #echo. 34
7.2 Executing expressions without output: #silent. 34
7.3 One-line #if . 34
7.4 Caching Output. 35

Caching individual placeholders. 35
Caching entire regions. 35

7.5 #raw . 36
7.6 #include. 37
7.7 #slurp . 37
7.8 #indent . 38
7.9 Ouput Filtering and #filter . 38

8 Import, Inheritance, Declaration and Assignment 40
8.1 #import and #from directives. 40
8.2 #extends. 40
8.3 #implements. 42
8.4 #set . 42
8.5 #del . 43
8.6 #attr . 44
8.7 #def . 44
8.8 #block ... #end block. 45

9 Flow Control 47
9.1 #for ... #end for. 47
9.2 #repeat ... #end repeat. 48
9.3 #while ... #end while. 48
9.4 #if ... #else if ... #else ... #end if. 49
9.5 #unless ... #end unless. 50
9.6 #break and #continue. 50
9.7 #pass . 51
9.8 #stop. 51
9.9 #return. 52

10 Error Handling 54
10.1 #try ... #except ... #end try, #finally, and #assert. 54
10.2 #errorCatcher and ErrorCatcher objects. 54

2 Contents

11 Instructions to the Parser/Compiler 57
11.1 #breakpoint. 57
11.2 #compiler-settings. 57

12 Fine Control over Cheetah-generated Python modules 59
12.1 Setting the source code encoding: #encoding. 59
12.2 Setting the sh-bang: #shBang. 59

13 Tips, Tricks and Troubleshooting 60
13.1 Placeholder Tips . 60
13.2 Diagnostic Output. 60
13.3 When to use Python methods. 61
13.4 Calling superclass methods, and why you have to. 61
13.5 All methods. 62
13.6 Optimizing templates. 65
13.7 PSP-style tags. 66
13.8 Makefiles . 66
13.9 Using Cheetah in a Multi-Threaded Application. 67
13.10Using Cheetah with gettext. 68

14 Using Cheetah with Webware 69
14.1 Installing Cheetah on a Webware system. 69
14.2 Containment vs Inheritance. 69

The Containment Approach. 70
The Inheritance Approach. 70

14.3 Site frameworks. 70
14.4 Directory structure. 71
14.5 Initializing your template-servlet with Python code. 71
14.6 Form processing. 71
14.7 Form input, cookies, session variables and web server variables. 72

.webInput() . 73
14.8 More examples. 75
14.9 Other Tips. 75

15 non-Webware HTML output 76
15.1 Static HTML Pages. 76
15.2 CGI scripts . 76

16 Non-HTML Output 78
16.1 Python source code. 78

17 Batteries included: templates and other libraries 79
17.1 ErrorCatchers. 79
17.2 FileUtils . 79
17.3 Filters . 79
17.4 SettingsManager. 79
17.5 Templates. 80
17.6 Tools. 80
17.7 Utils . 80

Cheetah.Templates.SkeletonPage. 81

18 Visual Editors 84

A Useful Web Links 85
A.1 Cheetah Links. 85

Contents 3

A.2 Third-party Cheetah Stuff. 85
A.3 Webware Links . 85
A.4 Python Links . 85
A.5 Other Useful Links . 86

Python Database Modules and Open Source Databases. 86
Other Template Systems. 86
Other Internet development frameworks. 86

B Examples 87
B.1 Syntax examples. 87
B.2 Webware Examples. 87

C Cheetah vs. Other Template Engines 88
C.1 Which features are unique to Cheetah. 88
C.2 Cheetah vs. Velocity. 88
C.3 Cheetah vs. WebMacro. 89
C.4 Cheetah vs. Zope’s DTML. 89
C.5 Cheetah vs. Zope Page Templates. 91
C.6 Cheetah vs. PHP’s Smarty templates. 91
C.7 Cheetah vs. PHPLib’s Template class. 94
C.8 Cheetah vs. PSP, PHP, ASP, JSP, Embperl, etc.. 94

D Optik license 96

c©Copyright 2001, The Cheetah Development Team. This document may be copied and modified under the terms of
theOpen Publication Licensehttp://www.opencontent.org/openpub/

4 Contents

1 Introduction

1.1 Who should read this Guide?

This Users’ Guide provides a technical overview and reference for the Cheetah template system. Knowledge of Python
and object-orientated programming is assumed. The emphasis in this Guide is on features useful in a wide variety of
situations. Information on less common situations and troubleshooting tips are gradually being moved to the Cheetah
FAQ. There is also a Cheetah Developer’s Guide for those who want to know what goes on under the hood.

This Guide also contains examples of integrating Cheetah with Webware for Python. You will have to learn Webware
from its own documentation in order to build a Webware + Cheetah site.

1.2 What is Cheetah?

Cheetah is a Python-powered template engine and code generator. It may be used as a standalone utility or combined
with other tools. Cheetah has many potential uses, but web developers looking for a viable alternative to ASP, JSP,
PHP and PSP are expected to be its principle user group.

Cheetah:

• generates HTML, SGML, XML, SQL, Postscript, form email, LaTeX, or any other text-based format. It has
also been used to produce Python, Java and PHP source code.

• cleanly separates content, graphic design, and program code. This leads to highly modular, flexible, and reusable
site architectures; faster development time; and HTML and program code that is easier to understand and main-
tain. It is particularly well suited for team efforts.

• blends the power and flexibility of Python with a simple template language that non-programmers can under-
stand.

• gives template writers full access in their templates to any Python data structure, module, function, object, or
method.

• makes code reuse easy by providing an object-oriented interface to templates that is accessible from Python
code or other Cheetah templates. One template can subclass another and selectively reimplement sections of it.
A compiled templateis a Python class, so it can subclass a pure Python class and vice-versa.

• provides a simple yet powerful caching mechanism

Cheetah integrates tightly withWebware for Python (http://webware.sourceforge.net/): a Python-powered application
server and persistent servlet framework. Webware provides automatic session, cookie, and user management and can
be used with almost any operating-system, web server, or database. Through Python, it works with XML, SOAP,
XML-RPC, CORBA, COM, DCOM, LDAP, IMAP, POP3, FTP, SSL, etc.. Python supports structured exception
handling, threading, object serialization, unicode, string internationalization, advanced cryptography and more. It can
also be extended with code and libraries written in C, C++, Java and other languages.

Like Python, Cheetah and Webware are Open Source software and are supported by active user communities. Together,
they are a powerful and elegant framework for building dynamic web sites.

Like its namesake, Cheetah is fast, flexible and powerful.

1.3 What is the philosophy behind Cheetah?

Cheetah’s design was guided by these principles:

• Python for the back end, Cheetah for the front end. Cheetah was designed to complement Python, not replace it.

5

• Cheetah’s core syntax should be easy for non-programmers to learn.

• Cheetah should make code reuse easy by providing an object-oriented interface to templates that is accessible
from Python code or other Cheetah templates.

• Python objects, functions, and other data structures should be fully accessible in Cheetah.

• Cheetah should provide flow control and error handling. Logic that belongs in the front end shouldn’t be
relegated to the back end simply because it’s complex.

• It should be easy toseparatecontent, graphic design, and program code, but also easy tointegrate them.

A clean separation makes it easier for a team of content writers, HTML/graphic designers, and programmers to
work together without stepping on each other’s toes and polluting each other’s work. The HTML framework and
the content it contains are two separate things, and analytical calculations (program code) is a third thing. Each
team member should be able to concentrate on their specialty and to implement their changes without having to
go through one of the others (i.e., the dreaded “webmaster bottleneck”).

While it should be easy to develop content, graphics and program code separately, it should be easy to integrate
them together into a website. In particular, it should be easy:

– for programmers to create reusable components and functions that are accessible and understandable to
designers.

– for designersto mark out placeholders for content and dynamic components in their templates.

– for designersto soft-code aspects of their design that are either repeated in several places or are subject to
change.

– for designersto reuse and extend existing templates and thus minimize duplication of effort and code.

– and, of course, forcontent writers to use the templates that designers have created.

Why Cheetah doesn’t use HTML-style tags

Cheetah does not use HTML/XML-style tags like some other template languages for the following reasons: Cheetah
is not limited to HTML, HTML-style tags are hard to distinguish from real HTML tags, HTML-style tags are not
visible in rendered HTML when something goes wrong, HTML-style tags often lead to invalid HTML (e.g.,<img
src="<template-directive>">), Cheetah tags are less verbose and easier to understand than HTML-style
tags, and HTML-style tags aren’t compatible with most WYSIWYG editors

Besides being much more compact, Cheetah also has some advantages over languages that put information inside the
HTML tags, such as Zope Page Templates or PHP: HTML or XML-bound languages do not work well with other
languages, While ZPT-like syntaxes work well in many ways with WYSIWYG HTML editors, they also give up a
significant advantage of those editors – concrete editing of the document. When logic is hidden away in (largely
inaccessible) tags it is hard to understand a page simply by viewing it, and it is hard to confirm or modify that logic.

1.4 Give me an example!

Here’s a very simple example that illustrates some of Cheetah’s basic syntax:

6 1 Introduction

<HTML>
<HEAD><TITLE>$title</TITLE></HEAD>
<BODY>

<TABLE>
#for $client in $clients
<TR>
<TD>$client.surname, $client.firstname</TD>
<TD>$client.email</TD>
</TR>
#end for
</TABLE>

</BODY>
</HTML>

Compare this with PSP:

<HTML>
<HEAD><TITLE><%=title%></TITLE></HEAD>
<BODY>

<TABLE>
<% for client in clients: %>
<TR>
<TD><%=client[’surname’]%>, <%=client[’firstname’]%></TD>
<TD><A HREF="mailto:<%=client[’email’]%>"><%=client[’email’]%></TD>
</TR>
<%end%>
</TABLE>

</BODY>
</HTML>

Section 3.7 has a more typical example that shows how to get the plug-in valuesinto Cheetah, and section 4.2 explains
how to turn your template definition into an object-oriented Python module.

1.5 Give me an example of a Webware servlet!

This example uses an HTML form to ask the user’s name, then invokes itself again to display apersonalizedfriendly
greeting.

1.5 Give me an example of a Webware servlet! 7

<HTML><HEAD><TITLE>My Template-Servlet</TITLE></HEAD><BODY>
#set $name = $request.field(’name’, None)
#if $name
Hello $name
#else
<FORM ACTION="" METHOD="GET">
Name: <INPUT TYPE="text" NAME="name">

<INPUT TYPE="submit">
</FORM>
#end if
</BODY></HTML>

To try it out for yourself on a Webware system:

1. copy the template definition to a filetest.tmpl in your Webware servlet directory.

2. Run “cheetah compile test.tmpl ”. This producestest.py (a .py template module) in the same direc-
tory.

3. In your web browser, go totest.py, using whatever site and directory is appropriate. Depending on your Web-
ware configuration, you may also be able to go totest.

At the first request, field ‘name’ will be blank (false) so the “#else” portion will execute and present a form. You type
your name and press submit. The form invokes the same page. Now ‘name’ is true so the “#if” portion executes,
which displays the greeting. The “#set” directive creates a local variable that lasts while the template is being filled.

1.6 How mature is Cheetah?

Cheetah is stable, production quality, post-beta code. Cheetah’s syntax, semantics and performance have been gener-
ally stable since a performance overhaul in mid 2001. Most of the changes since October 2001 have been in response
to specific requests by production sites, things they need that we hadn’t considered.

As of summer 2003, we are putting in the final touches before the 1.0 release.

The TODO andBUGS files in the Cheetah distribution show what we’re working on now or planning to work on.
There’s also aToDo page on the wiki (see below), which is updated less often. TheWishList page on the wiki shows
requested features we’re considering but haven’t commited to.

1.7 Where can I get news?

Cheetah releases and other stuff can be obtained from the the CheetahWeb site:
http://CheetahTemplate.sourceforge.net

Cheetah discussions take place on themailing list cheetahtemplate-discuss@lists.sourceforge.net. This is where to
hear the latest news first.

The Cheetahwiki is becoming an increasingly popular place to list examples of Cheetah in use, provide cookbook tips
for solving various problems, and brainstorm ideas for future versions of Cheetah.http://www.cheetahtemplate.org/wiki
(The wiki is actually hosted athttp://cheetah.colorstudy.net/twiki/bin/view/Cheetah/WebHome, but the other URL is
easier to remember.) For those unfamiliar with a wiki, it’s a type of Web site that readers can edit themselves to make
additions or corrections to. Try it. Examples and tips from the wiki will also be considered for inclusion in future
versions of this Users’ Guide.

If you encounter difficulties, or are unsure about how to do something, please post a detailed message to the list.

8 1 Introduction

1.8 How can I contribute?

Cheetah is the work of many volunteers. If you use Cheetah please share your experiences, tricks, customizations, and
frustrations.

Bug reports and patches

If you think there is a bug in Cheetah, send a message to the e-mail list with the following information:

1. a description of what you were trying to do and what happened

2. all tracebacks and error output

3. your version of Cheetah

4. your version of Python

5. your operating system

6. whether you have changed anything in the Cheetah installation

Example sites and tutorials

If you’re developing a website with Cheetah, please put a link on the wiki on theWhoIsUsingCheetahpage, and
mention it on the list. Also, if you discover new and interesting ways to use Cheetah, please put a quick tutorial
(HOWTO) about your technique on theCheetahRecipiespage on the wiki.

Template libraries and function libraries

We hope to build up a framework of Template libraries (see section 17.5) to distribute with Cheetah and would appre-
ciate any contributions.

Test cases

Cheetah is packaged with a regression testing suite that is run with each new release to ensure that everything is
working as expected and that recent changes haven’t broken anything. The test cases are in the Cheetah.Tests module.
If you find a reproduceable bug please consider writing a test case that will pass only when the bug is fixed. Send any
new test cases to the email list with the subject-line “new test case for Cheetah.”

Publicity

Help spread the word ... recommend it to others, write articles about it, etc.

1.9 Acknowledgements

Cheetah is one of several templating frameworks that grew out of a ‘templates’ thread on the Webware For Python
email list. Tavis Rudd, Mike Orr, Chuck Esterbrook and Ian Bicking are the core developers.

We’d like to thank the following people for contributing valuable advice, code and encouragement: Geoff Talvola, Jeff
Johnson, Graham Dumpleton, Clark C. Evans, Craig Kattner, Franz Geiger, Geir Magnusson, Tom Schwaller, Rober
Kuzelj, Jay Love, Terrel Shumway, Sasa Zivkov, Arkaitz Bitorika, Jeremiah Bellomy, Baruch Even, Paul Boddie,
Stephan Diehl, Chui Tey, Michael Halle, Edmund Lian and Aaron Held.

1.8 How can I contribute? 9

The Velocity, WebMacro and Smarty projects provided inspiration and design ideas. Cheetah has benefitted from the
creativity and energy of their developers. Thank you.

1.10 License

The gist Cheetah is open source, but products developed with Cheetah or derived from Cheetah may be open source
or closed source.

Cheetah.Utils.optik is based on a third-party package Optik by Gregory P Ward. Optik’s license is in appendix D.

Legal terms Copyright c©2001, The Cheetah Development Team: Tavis Rudd, Mike Orr, Ian Bicking, Chuck
Esterbrook.

Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of the authors not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission.

THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

These terms do not apply to theCheetah.Utils.optikpackage. Optik’s license is in appendix D.

10 1 Introduction

2 Vocabulary

Template is an informal term meaning a template definition, a template instance or a template class. Atemplate
definition is what the humantemplate maintainer writes: a string consisting of text, placeholders and directives.
Placeholdersare variables that will be looked up when the template is filled.Directivesare commands to be executed
when the template is filled, or instructions to the Cheetah compiler. The conventional suffix for a file containing a
template definition is.tmpl.

There are two things you can do with a template: compile it or fill it.Filling is the reason you have a template in
the first place: to get a finished string out of it. Compiling is a necessary prerequisite: theCheetah compilertakes a
template definition and produces Python code to create the finished string. Cheetah provides several ways to compile
and fill templates, either as one step or two.

Cheetah’s compiler produces a subclass ofCheetah.Template specific to that template definition; this is called
thegenerated class. A template instanceis an instance of a generated class.

If the user calls theTemplate constructor directly (rather than a subclass constructor), s/he will get what appears to
be an instance ofTemplate but is actually a subclass created on-the-fly.

The user can make the subclass explicit by using the “cheetah compile” command to write the template class to a
Python module. Such a module is called a.py template module.

TheTemplate Definition Language– or the “Cheetah language” for short – is the syntax rules governing placeholders
and directives. These are discussed in sections 5 and following in this Guide.

To fill a template, you call itsmain method. This is normally.respond() , but it may be something else, and you
can use the#implements directive to choose the method name. (Section 8.3.

A template-servlet is a .py template module in a Webware servlet directory. Such templates can be filled directly
through the web by requesting the URL. “Template-servlet” can also refer to the instance being filled by a particular
web request. If a Webware servlet that is not a template-servlet invokes a template, that template is not a template-
servlet either.

A placeholder tag is the substring in the template definition that is the placeholder, including the start and end
delimeters (if there is an end delimeter). Theplaceholder nameis the same but without the delimeters.

Placeholders consist of one or moreidentifiers separated by periods (e.g.,a.b). Each identifier must follow the same
rules as Python identifiers; that is, a letter or underscore followed by one or more letters, digits or underscores. (This
is the regular expression[A-Za-z_][A-Za-z0-9_]* .)

The first (or only) identifier of a placeholder name represents avariable to be looked up. Cheetah looks up variables
in variousnamespaces: the searchList, local variables, and certain other places. The searchList is a list of objects
(containers) with attributes and/or keys: each container is a namespace. Every template instance has exactly one
searchList. Identifiers after the first are looked up only in the parent object. The final value after all lookups have been
performed is theplaceholder value.

Placeholders may occur in three positions: top-level, expression and LVALUE.Top-level placeholders are those in
ordinary text (“top-level text”).Expressionplaceholders are those in Python expressions.LVALUE placeholders are
those naming a variable to receive a value. (LVALUE is computerese for “the left side of the equal sign”.) Section 5.3
explains the differences between these three positions.

The routine that does the placeholder lookups is called theNameMapper. Cheetah’s NameMapper supports universal
dotted notation and autocalling.Universal dotted notationmeans that keys may be written as if they were attributes:
a.b instead ofa[’b’] . Autocalling means that if any identifier’s value is found to be a function or method, Cheetah
will call it without arguments if there is no() following. More about the NameMapper is in section 5.5.

Some directives are multi-line, meaning they have a matching#end tag. The lines of text between the start and end
tags is thebody of the directive. Arguments on the same line as the start tag, in contrast, are considered part of the
directive tag. More details are in section 5.8 (Directive Syntax Rules).

11

3 Getting Started

3.1 Requirements

Cheetah requires Python release 2.0 or greater, and has been tested with Python 2.0, 2.1 and 2.2. It is known to run on
Linux, Windows NT/98/XP, FreeBSD and Solaris, and should run anywhere Python runs.

99% of Cheetah is written in Python. There is one small C module (namemapper.so) for speed, but Cheetah
automatically falls back to a Python equivalent (NameMapper.py) if the C module is not available.

3.2 Installation

To install Cheetah in your system-wide Python library:

1. Login as a user with privileges to install system-wide Python packages. On POSIX systems (AIX, Solaris,
Linux, IRIX, etc.), the command is normally ’su root’. On non-POSIX systems such as Windows NT, login as
an administrator.

2. Runpython setup.py install at the command prompt.

3. The setup program will install the wrapper scriptcheetahto wherever it usually puts Python binaries (”/usr/bin/”,
”bin/” in the Python install directory, etc.)

Cheetah’s installation is managed by Python’s Distribution Utilities (’distutils’). There are many options for cus-
tomization. Type‘‘python setup.py help’’ for more information.

To install Cheetah in an alternate location – someplace outside Python’ssite-packages/ directory, use one of
these options:

python setup.py install --home /home/tavis
python setup.py install --install-lib /home/tavis/lib/python

Either way installs to /home/tavis/lib/python/Cheetah/ . Of course, /home/tavis/lib/python must be in your Python path
in order for Python to find Cheetah.

3.3 Files

If you do the systemwide install, all Cheetah modules are installed in thesite-packages/Cheetah/subdirectory of your
standard library directory; e.g., /opt/Python2.2/lib/python2.2/site-packages/Cheetah.

Two commands are installed in Python’sbin/ directory or a system bin directory:cheetah (section 3.5) and
cheetah-compile (section 4.2).

3.4 Uninstalling

To uninstall Cheetah, merely delete the site-packages/Cheetah/ directory. Then delete the “cheetah” and “cheetah-
compile” commands from whichever bin/ directory they were put in.

3.5 The ’cheetah’ command

Cheetah comes with a utilitycheetah that provides a command-line interface to various housekeeping tasks. The
command’s first argument is the name of the task. The following commands are currently supported:

12 3 Getting Started

cheetah compile [options] [FILES ...] : Compile template definitions
cheetah fill [options] [FILES ...] : Fill template definitions
cheetah help : Print this help message
cheetah options : Print options help message
cheetah test : Run Cheetah’s regression tests
cheetah version : Print Cheetah version number

You only have to type the first letter of the command:cheetah c is the same ascheetah compile .

The test suite is described in the next section. Thecompile command will be described in section 4.2, and thefill
command in section 4.3.

The depreciatedcheetah-compile program does the same thing ascheetah compile .

3.6 Testing your installation

After installing Cheetah, you can run its self-test routine to verify it’s working properly on your system. Change
directory to any directory you have write permission in (the tests write temporary files). Do not run the tests in the
directory you installed Cheetah from, or you’ll get unnecessary errors. Type the following at the command prompt:

cheetah test

The tests will run for about three minutes and print a success/failure message. If the tests pass, start Python in
interactive mode and try the example in the next section.

Certain test failures are insignificant:

AssertionError: Template output mismatch: Expected Output = 0(end) Actual Output = False(end)Python
2.3 changed the string representation of booleans, and the tests haven’t yet been updated to reflect this.

AssertionError: subcommand exit status 127Certain tests run “cheetah” as a subcommand. The failure may mean
the command wasn’t found in your system path. (What happens if you run “cheetah” on the command line?)
The failure also happens on some Windows systems for unknown reasons. This failure has never been observed
outside the test suite. Long term, we plan to rewrite the tests to do a function call rather than a subcommand,
which will also make the tests run significantly faster.

ImportError: No module named SampleBaseClassThe test tried to write a temporary module in the current
directory andimport it. Reread the first paragraph in this section about the current directory.

ImportError: No module named tmp May be the same problem as SampleBaseClass; let us know if changing the
current directory doesn’t work.

If any other tests fail, please send a message to the e-mail list with a copy of the test output and the following details
about your installation:

1. your version of Cheetah

2. your version of Python

3. your operating system

4. whether you have changed anything in the Cheetah installation

3.6 Testing your installation 13

3.7 Quickstart tutorial

This tutorial briefly introduces how to use Cheetah from the Python prompt. The following chapters will discuss other
ways to use templates and more of Cheetah’s features.

The core of Cheetah is theTemplate class in theCheetah.Template module. The following example shows
how to use theTemplate class in an interactive Python session.t is the Template instance. Lines prefixed with>>>
and... are user input. The remaining lines are Python output.

>>> from Cheetah.Template import Template
>>> templateDef = """
... <HTML>
... <HEAD><TITLE>$title</TITLE></HEAD>
... <BODY>
... $contents
... ## this is a single-line Cheetah comment and won’t appear in the output
... #* This is a multi-line comment and won’t appear in the output
... blah, blah, blah
... *#
... </BODY>
... </HTML>"""
>>> nameSpace = {’title’: ’Hello World Example’, ’contents’: ’Hello World!’}
>>> t = Template(templateDef, searchList=[nameSpace])
>>> print t

<HTML>
<HEAD><TITLE>Hello World Example</TITLE></HEAD>
<BODY>
Hello World!
</BODY>
</HTML>
>>> print t # print it as many times as you want

[... same output as above ...]
>>> nameSpace[’title’] = ’Example #2’
>>> nameSpace[’contents’] = ’Hiya Planet Earth!’
>>> print t # Now with different plug-in values.
<HTML>
<HEAD><TITLE>Example #2</TITLE></HEAD>
<BODY>
Hiya Planet Earth!
</BODY>
</HTML>

Since Cheetah is extremely flexible, you can achieve the same result this way:

>>> t2 = Template(templateDef)
>>> t2.title = ’Hello World Example!’
>>> t2.contents = ’Hello World’
>>> print t2

[... same output as the first example above ...]
>>> t2.title = ’Example #2’
>>> t2.contents = ’Hello World!’
>>> print t2

[... same as Example #2 above ...]

14 3 Getting Started

Or this way:

>>> class Template3(Template):
>>> title = ’Hello World Example!’
>>> contents = ’Hello World!’
>>> t3 = Template3(templateDef)
>>> print t3

[... you get the picture ...]

The template definition can also come from a file instead of a string, as we will see in section 4.1.

The above is all fine for short templates, but for long templates or for an application that depends on many templates
in a hierarchy, it’s easier to store the templates in separate *.tmpl files and use thecheetah compileprogram to convert
them into Python classes in their own modules. This will be covered in section 4.2.

As an appetizer, we’ll just briefly mention that you can store constant valuesinsidethe template definition, and they
will be converted to attributes in the generated class. You can also create methods the same way. You can even use
inheritance to arrange your templates in a hierarchy, with more specific templates overriding certain parts of more
general templates (e.g., a ”page” template overriding a sidebar in a ”section” template).

For the minimalists out there, here’s a template definition, instantiation and filling all in one Python statement:

>>> print Template("Templates are pretty useless without placeholders.")
Templates are pretty useless without placeholders.

You use a precompiled template the same way, except you don’t provide a template definition since it was already
established:

from MyPrecompiledTemplate import MyPrecompiledTemplate
t = MyPrecompiledTemplate()
t.name = "Fred Flintstone"
t.city = "Bedrock City"
print t

3.7 Quickstart tutorial 15

4 How Cheetah Works

As mentioned before, you can do two things with templates: compile them and fill them. (Actually you can query
them too, to see their attributes and method values.) Using templates in a Python program was shown in section 3.7
(Quickstart tutorial). Here we’ll focus on compiling and filling templates from the shell command line, and how to
make .py template modules. The compiling information here is also important for template-servlets, which will be
otherwise covered in chapter 14 (Webware).

4.1 Constructing Template Objects

The heart of Cheetah is theTemplate class in theCheetah.Template module. You can use it directly if you
have a template definition in hand, or indirectly through a precompiled template, which is a subclass. The constructor
accepts the following keyword arguments. (If you’re a beginner, learn the first three arguments now; the others are
much less frequent.)

sourceThe template definition as a string. You may omit thesource= prefix if it’s the first argument, as in all the
examples below. The source can be a string literal in your module, or perhaps a string you read from a database
or other data structure.

file A filename or file object containing the template definition. A filename must be a string, and a file object must be
open for reading. By convention, template definition files have the extension.tmpl.

searchList A list of objects to add to the searchList. The attributes/keys of these objects will be consulted for
$placeholder lookup.

filter A class that will format every$placeholder value. You may specify a class object or string. If a class
object, it must be a subclass ofCheetah.Filters.Filter . If a string, it must be the name of one of the
filters in filtersLib module (see next item). (You may also use the#filter directive (section 7.9) to switch
filters at runtime.)

filtersLib A module containing the filters Cheetah should look up by name. The default isCheetah.Filters .
All classes in this module that are subclasses ofCheetah.Filters.Filter are considered filters.

errorCatcher A class to handle$placeholder errors. You may specify a class object or string. If a class object,
it must be a subclass ofCheetah.ErrorCatchers.ErrorCatcher . If a string, it must be the name of
one of the error catchers inCheetah.ErrorCatchers . This is similar to the#errorCatcher directive
(section 10.2).

compilerSettingsA dictionary (or dictionary hierarchy) of settings that change Cheetah’s behavior. Not yet docu-
mented.

To useTemplate directly, youmustspecify eithersource or file , but not both. To use a precompiled template,
you must notspecify either one, because the template definition is already built into the class. The other arguments,
however, may be used in either case. Here are typical ways to create a template instance:

t = Template("The king is a $placeholder1.")
Pass the template definition as a string.

t = Template(file="fink.tmpl")
Read the template definition from a file named ”fink.tmpl”.

t = Template(file=f)
Read the template definition from file-like object ’f’.

16 4 How Cheetah Works

t = Template("The king is a $placeholder1.", searchList=[dict, obj])
Pass the template definition as a string. Also pass two namespaces for the searchList: a dictionary ’dict’ and an
instance ’obj’.

t = Template(file="fink.txt", searchList=[dict, obj])
Same, but pass a filename instead of a string.

t = Template(file=f, searchList=[dict, obj])
Same with a file object.

If you useTemplate directly, the template definition will be compiled the first time it’s filled. Compilation creates
a template-specific class called thegenerated class, which is a subclass ofTemplate . It then dynamically switches
the instance so it’s now an instance of this class. Don’t worry if you don’t understand this; it works.

When you precompile a template using the “cheetah compile” command, it writes the generated class to a file. Ac-
tually, what it writes is the source code for a Python module that contains the generated class. Again, the generated
class is a subclass ofTemplate . We call the generated module a.py template module. Thus, if you always use
precompiled templates (as many people do), you can view Cheetah as a convenient front-end for writing certain kinds
of Python modules, the way you might use a graphical dialog builder to make a dialog module.

Precompiled templates provide a slight performance boost because the compilation happens only once rather than
every time it’s instantiated. Also, once you import the .py template module and allow Python to create a .pyc or .pyo
file, you skip the Python compiler too. The speed advantage of all this is negligable, but it may make a difference in
programs that use templates many times a second.

Template subclasses Webware’sServlet class when available, so the generated class can be used as a Webware
servlet. This is practical only with precompiled templates.

To fill a template, you call itsmain method. This is normally.respond() , but under certain circumstances it’s
.writeBody() or a user-defined name. (Section 8.3 explains why the method name is not always the same.) How-
ever,. str () is always an alias for the main method, so you can always useprint myTemplateInstance
or str(myTempateInstance) to fill it. You can also call any#def or #block method and it will fill just that
portion of the template, although this feature is not often used.

4.2 “cheetah compile” and .py template modules

To create a .py template module, do either of these:

cheetah compile [options] [FILES ...]
cheetah c [options] [FILES ...]

The following options are supported:

--idir DIR, --odir DIR : input/output directories (default: current dir)
--iext EXT, --oext EXT : input/output filename extensions

(default input: tmpl, default output: py)
-R : recurse subdirectories looking for input files
--debug : print lots of diagnostic output to standard error
--flat : no destination subdirectories
--nobackup : don’t make backups
--stdout, -p : output to standard output (pipe)

Note: If Cheetah can’t find your input files, or if it puts output files in the wrong place, use the--debug option to
see what Cheetah thinks of your command line.

4.2 “cheetah compile” and .py template modules 17

The most basic usage is:

cheetah compile a.tmpl : writes a.py
cheetah compile a.tmpl b.tmpl : writes a.py and b.py

Cheetah will automatically add the default input extension (.tmpl) if the file is not found. So the following two
examples are the same as above (provided files “a” and “b” don’t exist):

cheetah compile a : writes a.py (from a.tmpl)
cheetah compile a b : writes a.py and b.py

You can override the default input extension and output extension (py) using--iext and--oext , although there’s
little reason to do so. Cheetah assumes the extension has a leading dot (.) even if you don’t specify it.

Use the-R option to recurse subdirectories:

cheetah compile dir1 : error, file is a directory
cheetah compile -R dir1 : look in ‘dir1’ for files to compile
cheetah compile : error, no file specified
cheetah compile -R : look in current directory for files

to compile
cheetah compile -R a b dir1 : compile files and recurse

When recursing, only regular files that end in the input extension (.tmpl) are considered source files. All other filenames
are ignored.

The options--idir and --odir allow you to specify that the source (and/or destination) paths are relative to a
certain directory rather than to the current directory. This is useful if you keep your *.tmpl and *.py files in separate
directory hierarchies. After editing a source file, just run one of these (or put the command in a script or Makefile):

cheetah compile --odir /var/webware a.tmpl
cheetah compile -R --odir /var/webware
cheetah c --odir /var/webware sub/a.tmpl

: writes /var/webware/sub/a.py

“cheetah compile” overwrites any existing.py file it finds, after backing it up to FILENAME.pybak (unless you
specify--nobackup). For this reason, you should make changes to the.tmpl version of the template rather than
to the.py version.

For the same reason, if your template requires custom Python methods or other Python code, don’t put it in the
FILENAME.py file. Instead, put it in a separate base class and use the#extends directive to inherit from it.

Because FILENAME will be used as a class and module name, it must be a valid Python identifier. For instance,
cheetah compile spam-eggs.tmpl is illegal because of the hyphen (”-”). This is sometimes inconvenient
when converting a site of HTML files into Webware servlets. Fortunately, thedirectory it’s in does not have to be an
identifier. (Hint: for date-specific files, try converting 2002/04/12.html to 2002/04/12/index.tmpl. This also gives you
a directory to store images or supplemental files.)

Occasionally you may want output files put directly into the output directory (or current directory), rather than into
a subdirectory parallel to the input file. The--flat option does this. Note that this introduces the possibility that
several input files might map to one output file. Cheetah checks for output file collisions before writing any files, and
aborts if there are any collisions.

18 4 How Cheetah Works

cheetah c sub/a.py : writes sub/a.py
cheetah c --flat sub/a.py : writes a.py
cheetah c --odir DEST sub/a.tmpl

: writes DEST/sub/a.py
cheetah c --flat --odir DEST sub/a.tmpl

: writes DEST/a.py
cheetah c --idir /home/henry sub/rollins.tmpl

: writes sub/rollins.py
cheetah c --flat --idir /home/henry sub/rollins.tmpl

: writes rollins.py
cheetah c --idir /home/henry --odir /home/henry sub/rollins.tmpl

: writes /home/henry/sub/rollins.py
cheetah c --flat --idir /home/henry --odir /home/henry sub/rollins.tmpl

: writes /home/henry/rollins.py

Whenever “cheetah compile” has to create an output directory or subdirectory, it also creates aninit .py file in it.
This file is necessary in order to make Python treat the directory as a Python package.

One of the advantages of .py template modules is that you don’t lose any flexibility. The generated class contains all
#attr values and#def /#block values as ordinary attributes and methods, so you can read the values individually
from other Python tools for any kind of custom processing you want. For instance, you can extract the titles of all your
templates into a database, or find all the servlets with a certain$author value.

4.3 “cheetah fill”

You can compile and fill a large number of template definitions from the command line in one step usingcheetah
fill . This compiles the template in memory; it doesnot save the .py template module to disk. Instead it writes a
finished output file, which has the extension.html by default. All the options tocheetah compile work the
same way here, and there are also a couple additional options:

--env : put the environment in the searchList
--pickle FILE : unpickle FILE and put that object in the searchList

Because you can’t provide a searchList on the command line, the templates must either contain or inherit all the
variables it needs, or use the--env and--pickle options to provide additional variables.

Examples:

cheetah fill a.tmpl : writes a.html
cheetah fill a.tmpl b.tmpl : writes a.html and b.html
cheetah f --oext txt a : writes a.txt (from a.tmpl)

Using--env may have security or reliability implications because the environment normally contains lots of variables
you inherited rather than defining yourself. If any of these variables override any of yours (say a#def), you will get
incorrect output, may reveal private information, and may get an exception due to the variable being an unexpected
type (environmental variables are always strings). Your calling program may wish to clear out the environment before
setting environmental variables for the template.

There are two other differences between “cheetah compile” and “cheetah fill”. Cheetah doesn’t createinit .py
files when creating directories in fill mode. Also, the source filenames don’t have to be identifiers.

4.3 “cheetah fill” 19

4.4 Some trivia about .py template modules

We won’t look inside .py template modules in this Guide except to note that they are very different from template
definitions. The following template definition fragment:

The number is $Test.unittest.main.

compiles to this:

write("The number is ")
write(filter(VFN(VFS(SL,"Test.unittest",1),"main",0)
write(".")

The Cheetah Developers’ Guide looks at .py template modules in depth, and shows what the various directives compile
to. But you are welcome to take a peek at some .py template modules yourself if you’re curious about what Cheetah
does under the hood. It’s all regular Python code: writing strings and function calls to a file-like object.

Looking at a .py template module may also help you see why something doesn’t work, by seeing what Cheetah thought
you meant. It also helps discourage you from modifying the .py file yourself, because who wants to keep all those
function calls and arguments straight? Let the computer do the drudgery work.

4.5 Running a .py template module as a standalone program

In addition to importing your .py template module file into a Python script or using it as a Webware servlet, you can
also run it from the command line as a standalone program. The program will print the filled template on standard
output. This is useful while debugging the template, and for producing formatted output in shell scripts.

When running the template as a program, you cannot provide a searchList or setself. attributes in the normal way,
so you must take alternative measures to ensure that every placeholder has a value. Otherwise, you will get the usual
NameMapper.NotFound exception at the first missing value. You can either set default values in the template
itself (via the#attr or #def directives) or in a Python superclass, or use the--env or --pickle command-line
options, which work just like their “cheetah fill” counterparts.

Runpython FILENAME.py --help to see all the command-line options your .py template module accepts.

4.6 Object-Oriented Documents

Because Cheetah documents are actually class definitions, templates may inherit from one another in a natural way,
using regular Python semantics. For instance, consider this template, FrogBase.tmpl:

20 4 How Cheetah Works

#def title
This document has not defined its title
#end def
#def htTitle
$title
#end def
<HTML><HEAD>
<TITLE>$title</TITLE>
</HEAD><BODY>
<H1>$htTitle</H1>
$body
</BODY></HTML>

And its subclassed document, Frog1.tmpl:

#from FrogBase import FrogBase
#extends FrogBase
#def title
The Frog Page
#end def
#def htTitle
The page
#end def
#def body
... lots of info about frogs ...
#end def

This is a classic use of inheritance. The parent “template” is simply an abstract superclass. Each document specializes
the output of its parent. For instance, here the parent defines$htTitle so that by default it’s identical to whatever
the$title is, but it can also be customized.

In many other templating systems, you’d have to use case statements or if-elseif blocks of some sort, repeated in many
different sections of code.

While we show another Cheetah document inheriting from this parent, a Python class can inherit from it just as easily.
This Python class could define its programmatically-driven value for$body and$title , simply by defining body()
and title() methods that return a string. (Actually they can return anything, but we’ll get into that later.)

from FrogBase import FrogBase
class Frog2(FrogBase):
def title(self):
return "Frog 2 Page"
We don’t override .htTitle, so it defaults to "Frog 2 Page" too.
def body(self):
return " ... more info about frogs ..."

Similarly, the Cheetah document can inherit from an arbitrary class. That’s how Cheetah makes templates usable as
Webware servlets, by subclassingServlet . This technique should be possible for non-Webware systems too.

(Note:FrogBase.tmpl could be improved by using the#block directive, section 8.8.)

4.6 Object-Oriented Documents 21

5 Language Overview

Cheetah’s basic syntax was inspired by the Java-based template engines Velocity and WebMacro. It has two types of
tags:$placeholdersand#directives. Both types are case-sensitive.

Placeholder tags begin with a dollar sign ($varName) and are similar to data fields in a form letter or to the%(key)s
fields on the left side of Python’s%operator. When the template is filled, the placeholders are replaced with the values
they refer to.

Directive tags begin with a hash character (#) and are used for comments, loops, conditional blocks, includes, and all
other advanced features. (Note: you can customize the start and end delimeters for placeholder and directive tags, but
in this Guide we’ll assume you’re using the default.)

Placeholders and directives can be escaped by putting a backslash before them.\$var and\#if will be output as
literal text.

A placeholder or directive can span multiple physical lines, following the same rules as Python source code: put a
backslash (\) at the end of all lines except the last line. However, if there’s an unclosed parenthesis, bracket or brace
pending, you don’t need the backslash.

#if $this_is_a_very_long_line and $has_lots_of_conditions \
and $more_conditions:

<H1>bla</H1>
#end if

#if $country in (’Argentina’, ’Uruguay’, ’Peru’, ’Colombia’,
’Costa Rica’, ’Venezuela’, ’Mexico’)

<H1>Hola, senorita!</H1>
#else
<H1>Hey, baby!</H1>
#end if

5.1 Language Constructs – Summary

1. Comments and documentation strings

(a) ##single line

(b) #* multi line *#

2. Generation, caching and filtering of output

(a) plain text

(b) look up a value:$placeholder

(c) evaluate an expression:#echo . . .

(d) same but discard the output:#silent . . .

(e) one-line if:#if EXPR then EXPR else EXPR

(f) gobble the EOL:#slurp

(g) parsed file includes:#include . . .

(h) raw file includes:#include raw . . .

(i) verbatim output of Cheetah code:#raw . . .#end raw

(j) cached placeholders:$*var , $*<interval>*var

(k) cached regions:#cache . . .#end cache

22 5 Language Overview

(l) set the output filter:#filter . . .

(m) control output indentation:#indent . . . (not implemented yet)

3. Importing Python modules and objects:#import . . . ,#from . . .

4. Inheritance

(a) set the base class to inherit from:#extends

(b) set the name of the main method to implement:#implements . . .

5. Compile-time declaration

(a) define class attributes:#attr . . .

(b) define class methods:#def . . .#end def

(c) #block . . .#end block provides a simplified interface to#def . . .#end def

6. Run-time assignment

(a) local vars:#set . . .

(b) global vars:#set global . . .

(c) deleting local vars:#del . . .

7. Flow control

(a) #if . . .#else . . .#else if (aka#elif) . . .#end if

(b) #unless . . .#end unless

(c) #for . . .#end for

(d) #repeat . . .#end repeat

(e) #while . . .#end while

(f) #break

(g) #continue

(h) #pass

(i) #stop

8. error/exception handling

(a) #assert

(b) #raise

(c) #try . . .#except . . .#else . . .#end try

(d) #try . . .#finally . . .#end try

(e) #errorCatcher . . . set a handler for exceptions raised by $placeholder calls.

9. Instructions to the parser/compiler

(a) #breakpoint

(b) #compiler-settings . . .#end compiler-settings

10. Escape to pure Python code

(a) evalute expression and print the output:<%=. . .%>

(b) execute code and discard output:<%. . .%>

11. Fine control over Cheetah-generated Python modules

(a) set the source code encoding of compiled template modules:#encoding

(b) set the sh-bang line of compiled template modules:#shBang

The use of all these constructs will be covered in the next several chapters.

5.1 Language Constructs – Summary 23

5.2 Placeholder Syntax Rules

• Placeholders follow the same syntax rules as Python variables except that they are preceded by$ (the short
form) or enclosed in${} (the long form). Examples:

$var
${var}
$var2.abc[’def’](’gh’, $subplaceholder, 2)
${var2.abc[’def’](’gh’, $subplaceholder, 2)}

We recommend$ in simple cases, and${} when followed directly by a letter or when Cheetah or a human
template maintainer might get confused about where the placeholder ends. You may alternately use$() or
$[] , although this may confuse the (human) template maintainer:

$(var)
$[var]
$(var2.abc[’def’](’gh’, $subplaceholder, 2))
$[var2.abc[’def’](’gh’, $subplaceholder, 2)]

Note: Advanced users can change the delimiters to anything they want via the#compiler directive.

Note 2:The long form can be used only with top-level placeholders, not in expressions. See section 5.3 for an
elaboration on this.

• To reiterate Python’s rules, placeholders consist of one or more identifiers separated by periods. Each identifier
must start with a letter or an underscore, and the subsequent characters must be letters, digits or underscores.
Any identifier may be followed by arguments enclosed in() and/or keys/subscripts in[] .

• Identifiers are case sensitive.$var does not equal$Var or $vAr or $VAR.

• Arguments inside() or [] are just like in Python. Strings may be quoted using any Python quoting style.
Each argument is an expression and may use any of Python’s expression operators. Variables used in argument
expressions are placeholders and should be prefixed with$. This also applies to the *arg and **kw forms.
However, you donotneed the$ with the special Python constantsNone, True andFalse . Examples:

$hex($myVar)
$func($arg=1234)
$func2($*args, $**kw)
$func3(3.14159, $arg2, None, True)
$myList[$mySubscript]

• Trailing periods are ignored. Cheetah will recognize that the placeholder name in$varName. is varName ,
and the period will be left alone in the template output.

• The syntax${placeholderName, arg1="val1"} passes arguments to the output filter (see#filter ,
section 7.9. The braces and comma are required in this case. It’s conventional to omit the$ before the keyword
arguments (i.e.arg1) in this case.

• Cheetah ignores all dollar signs ($) that are not followed by a letter or an underscore.

The following are valid $placeholders:

$a $_ $var $_var $var1 $_1var $var2_ $dict.key $list[3]
$object.method $object.method() $object.method
$nest($nest($var))

24 5 Language Overview

These are not $placeholders but are treated as literal text:

$@var $ˆvar $15.50 $$

5.3 Where can you use placeholders?

There are three places you can use placeholders: top-level position, expression position and LVALUE position. Each
has slightly different syntax rules.

Top-level position means interspersed in text. This is the only place you can use the placeholder long form:${var} .

Expression positionmeans inside a Cheetah expression, which is the same as a Python expression. The placeholder
names a searchList or other variable to be read. Expression position occurs inside () and[] arguments within place-
holder tags (i.e., a placeholder inside a placeholder), and in several directive tags.

LVALUE positionmeans naming a variable that will be written to. LVALUE is a computer science term meaning “the
left side of an assignment statement”. The first argument of directives#set , #for , #def , #block and#attr is
an LVALUE.

This stupid example shows the three positions. Top-level position is shown incourier , expression position isitalic,
and LVALUE position isbold.

#for $count in $range($ninetyNine, 0, -1)
#set$after = $count- 1
$count bottles of beer on the wall.$count bottles of beer!
Take one down, pass it around.$after bottles of beer on the wall.
#end for
$hex ($myVar, $default=None)

The output of course is:

99 bottles of beer on the wall. 99 bottles of beer!
Take one down, pass it around. 98 bottles of beer on the wall.

98 bottles of beer on the wall. 98 bottles of beer!
Take one down, pass it around. 97 bottles of beer on the wall.

...

5.4 Are all those dollar signs really necessary?

$ is a “smart variable prefix”. When Cheetah sees$, it determines both the variable’s position and whether it’s a
searchList value or a non-searchList value, and generates the appropriate Python code.

In top-level position, the$ is required. Otherwise there’s nothing to distinguish the variable from ordinary text, and
the variable name is output verbatim.

In expression position, the$ is required if the value comes from the searchList or a “#set global” variable,rec-
ommendedfor local/global/builtin variables, andnot necessaryfor the special constantsNone, True andFalse .
This works because Cheetah generates a function call for a searchList placeholder, but a bare variable name for a
local/global/builtin variable.

In LVALUE position, the$ is recommended. Cheetah knows where an LVALUE is expected, so it can handle your
variable name whether it has$ or not.

5.3 Where can you use placeholders? 25

EXCEPTION: Donot use the$ prefix for intermediate variables in a Python list comprehensions. This is a limitation
of Cheetah’s parser; it can’t tell which variables in a list comprehension are the intermediate variables, so you have to
help it. For example:

#set $theRange = [x ** 2 for x in $range(10)]

$theRange is a regular#set variable.$range is a Python built-in function. Butx is a scratch variable internal to
the list comprehension: if you type$x , Cheetah will miscompile it.

5.5 NameMapper Syntax

One of our core aims for Cheetah was to make it easy for non-programmers to use. Therefore, Cheetah uses a simplified
syntax for mapping placeholders in Cheetah to values in Python. It’s known as theNameMapper syntaxand allows
for non-programmers to use Cheetah without knowing (a) the difference between an instance and a dictionary, (b) what
functions and methods are, and (c) what ’self’ is. A side benefit is that you can change the underlying data structure
(e.g., instance to dictionary or vice-versa) without having to modify the templates.

NameMapper syntax is used for all variables in Cheetah placeholders and directives. If desired, it can be turned off
via theTemplate class’’useNameMapper’ compiler setting. But it’s doubtful you’d ever want to turn it off.

Example

Consider this scenario:

You are building a customer information system. The designers with you want to use information from your system
on the client’s website –AND– they want to understand the display code and so they can maintian it themselves.

You write a UI class with a ’customers’ method that returns a dictionary of all the customer objects. Each customer
object has an ’address’ method that returns the a dictionary with information about the customer’s address. The
designers want to be able to access that information.

Using PSP, the display code for the website would look something like the following, assuming your servlet subclasses
the class you created for managing customer information:

<%= self.customer()[ID].address()[’city’] %> (42 chars)

With Cheetah’s NameMapper syntax, you can use any of the following:

$self.customers()[$ID].address()[’city’] (39 chars)
--OR--
$customers()[$ID].address()[’city’]
--OR--
$customers()[$ID].address().city
--OR--
$customers()[$ID].address.city
--OR--
$customers[$ID].address.city (27 chars)

Which of these would you prefer to explain to the designers, who have no programming experience? The last form
is 15 characters shorter than the PSP version and – conceptually – far more accessible. With PHP or ASP, the code
would be even messier than with PSP.

26 5 Language Overview

This is a rather extreme example and, of course, you could also just implement$getCustomer($ID).city and
obey the Law of Demeter (search Google for more on that). But good object orientated design isn’t the point of this
example.

Dictionary Access

NameMapper syntax allows access to dictionary items with the same dotted notation used to access object attributes
in Python. This aspect of NameMapper syntax is known as ’Unified Dotted Notation’. For example, with Cheetah it
is possible to write:

$customers()[’kerr’].address() --OR-- $customers().kerr.address()

where the second form is in NameMapper syntax.

This works only with dictionary keys that also happen to be valid Python identifiers.

Autocalling

Cheetah automatically detects functions and methods in Cheetah $variables and calls them if the parentheses have
been left off. Our previous example can be further simplified to:

$customers.kerr.address

As another example, if ’a’ is an object, ’b’ is a method

$a.b

is equivalent to

$a.b()

If b returns a dictionary, then following variations are possible

$a.b.c --OR-- $a.b().c --OR-- $a.b()[’c’]

where ’c’ is a key in the dictionary that a.b() returns.

Further notes:

• When Cheetah autocalls a function/method, it calls it without any arguments. Thus, the function/method must
have been declared without arguments (exceptself for methods) or to provide default values for all arguments.
If the function requires arguments, you must use the() .

• Cheetah autocalls only functions and methods. Classes and other callable objects are not autocalled. The
reason is that the primary purpose of a function/method is to call it, whereas the primary purpose of an in-
stance is to look up its attributes or call its methods, not to call the instance itself. And calling a class may
allocate large sums of memory uselessly or have other side effects, depending on the class. For instance, con-
sider$myInstance.fname . Do we want to look upfname in the namespace ofmyInstance or in the
namespace of whatevermyinstance returns? It could go either way, so Cheetah follows the principle of

5.5 NameMapper Syntax 27

least surprise. If youdo want to call the instance, put the() on, or rename the. call () method to
. str .

• Autocalling can be disabled via Cheetah’s ’useAutocalling’ compiler setting. You can also disable it for one
placeholder by using the syntax$getVar(’varName’, ’default value’, False) . (.getvar()
works only with searchList values.)

5.6 Namespace cascading and the searchList

When Cheetah maps a variable name in a template to a Python value, it searches several namespaces in order:

1. Local variables: created by#set , #for , or predefined by Cheetah.

2. ThesearchList, consisting of:

(a) #set global variables.

(b) ThesearchListcontainers you passed to theTemplate constructor, if any.

(c) The Template instance (“self”). This contains any attributes you assigned,#def methods and
#block methods , attributes/methods inherited via#extends , and other attributes/methods built into
Template or inherited by it (there’s a list of all these methods in section 13.5).

3. Python globals: created by#import , #from ... import , or otherwise predefined by Cheetah.

4. Python builtins: None, max, etc.

The first matching name found is used.

Remember, these namespaces apply only to thefirst identifier after the$. In a placeholder like$a.b , only ‘a’ is
looked up in the searchList and other namespaces. ‘b’ is looked up only inside ‘a’.

A searchList container can be any Python object with attributes or keys: dictionaries, instances, classes or modules. If
an instance contains both attributes and keys, its attributes are searched first, then its keys.

Because theTemplate instance is part of the searchList, you can access its attributes/methods without ‘self’:
$myAttr . However, use the ‘self’ if you want to make sure you’re getting theTemplate attribute and not a
same-name variable defined in a higher namespace:$self.myAttr . This works because “self” itself is a local
variable.

The final resulting value, after all lookups and function calls (but before the filter is applied) is called theplaceholder
value, no matter which namespace it was found in.

Note carefully: if you put an object ‘myObject’ in the searchList, youcannotlook up$myObject ! You can look up
only the attributes/keysinside‘myObject’.

Earlier versions of Cheetah did not allow you to override Python builtin names, but this was fixed in Cheetah 0.9.15.

If your template will be used as a Webware servlet, do not override methods ’name’ and ’log’ in theTemplate
instance or it will interfere with Webware’s logging. However, itis OK to use those variables in a higher namespace,
since Webware doesn’t know about Cheetah namespaces.

5.7 Missing Values

If NameMapper can not find a Python value for a Cheetah variable name, it will raise the NameMapper.NotFound ex-
ception. You can use the#errorCatcher directive (section 10.2) orerrorCatcher Template constructor argument
(section 4.1) to specify an alternate behaviour. BUT BE AWARE THAT errorCatcher IS ONLY INTENDED FOR
DEBUGGING!

28 5 Language Overview

To provide a default value for a placeholder, write it like this:$getVar(’varName’, ’default value’) .
If you don’t specify the default; i.e.,$getVar(’varName’) , the default isNone, which is converted to ‘’ by the
output filter.

5.8 Directive Syntax Rules

Directive tags begin with a hash character (#) and are used for comments, loops, conditional blocks, includes, and all
other advanced features. Cheetah uses a Python-like syntax inside directive tags and understands any valid Python
expression.However, unlike Python, Cheetah does not use colons (:) and indentation to mark off multi-line
directives. That doesn’t work in an environment where whitespace is significant as part of the text. Instead, multi-
line directives like#for have corresponding closing tags (#end for). Most directives are direct mirrors of Python
statements.

Many directives have arguments after the opening tag, which must be in the specified syntax for the tag. All end tags
have the following syntax:

#end TAG_NAME [EXPR]

The expression is ignored, so it’s essentially a comment.

Directive closures and whitespace handling

Directive tags can be closed explicitly with#, or implicitly with the end of the line if you’re feeling lazy.

#block testBlock #
Text in the body of the
block directive
#end block testBlock #

is identical to:

#block testBlock
Text in the body of the
block directive
#end block testBlock

When a directive tag is closed explicitly, it can be followed with other text on the same line:

bah, bah, #if $sheep.color == ’black’# black#end if # sheep.

When a directive tag is closed implicitly with the end of the line, all trailing whitespace is gobbled, including the
newline character:

5.8 Directive Syntax Rules 29

"""
foo #set $x = 2
bar
"""
outputs
"""
foo bar
"""

while
"""
foo #set $x = 2 #
bar
"""
outputs
"""
foo
bar
"""

When a directive tag is closed implicitly AND there is no other text on the line, the ENTIRE line is gobbled up
including any preceeding whitespace:

"""
foo

#set $x = 2
bar
"""
outputs
"""
foo
bar
"""

while
"""
foo

- #set $x = 2
bar
"""
outputs
"""
foo

- bar
"""

The#slurp directive (section 7.7) also gobbles up whitespace.

Spaces outside directives are outputexactlyas written. In the black sheep example, there’s a space before “black” and
another before “sheep”. So although it’s legal to put multiple directives on one line, it can be hard to read.

30 5 Language Overview

#if $a# #echo $a + 1# #end if
- There’s a space between each directive,

or two extra spaces total.
#if $a##echo $a + 1##end if

- No spaces, but you have to look closely
to verify none of the ‘‘##’’ are comment markers.

#if $a##echo $a + 1##end if ### A comment.
- In ‘‘###’’, the first ‘‘#’’ ends the directive,

the other two begin the comment. (This also shows
how you can add extra whitespace in the directive
tag without affecting the output.)
#if $a##echo $a + 1##end if # ## A comment.

- More readable, but now there’s a space before the
comment.

5.8 Directive Syntax Rules 31

6 Comments

Comments are used to mark notes, explanations, and decorative text that should not appear in the output. Cheetah
maintains the comments in the Python module it generates from the Cheetah source code. There are two forms of the
comment directive: single-line and multi-line.

All text in a template definition that lies between two hash characters (##) and the end of the line is treated as a
single-line comment and will not show up in the output, unless the two hash characters are escaped with a backslash.

##============================= this is a decorative comment-bar
$var ## this is an end-of-line comment
##=============================

Any text between#* and*# will be treated as a multi-line comment.

#*
Here is some multiline
comment text

*#

If you put blank lines around method definitions or loops to separate them, be aware that the blank lines will be output
as is. To avoid this, make sure the blank lines are enclosed in a comment. Since you normally have a comment before
the next method definition (right?), you can just extend that comment to include the blank lines after the previous
method definition, like so:

#def method1
... lines ...
#end def
#*

Description of method2.
$arg1, string, a phrase.

*#
#def method2($arg1)
... lines ...
#end def

6.1 Docstring Comments

Python modules, classes, and methods can be documented with inline ’documentation strings’ (aka ’docstrings’).
Docstrings, unlike comments, are accesible at run-time. Thus, they provide a useful hook for interactive help utilities.

Cheetah comments can be transformed into doctrings by adding one of the following prefixes:

32 6 Comments

##doc: This text will be added to the method docstring
#*doc: If your template file is MyTemplate.tmpl, running "cheetah compile"

on it will produce MyTemplate.py, with a class MyTemplate in it,
containing a method .respond(). This text will be in the .respond()
method’s docstring. *#

##doc-method: This text will also be added to .respond()’s docstring
#*doc-method: This text will also be added to .respond()’s docstring *#

##doc-class: This text will be added to the MyTemplate class docstring
#*doc-class: This text will be added to the MyTemplate class docstring *#

##doc-module: This text will be added to the module docstring MyTemplate.py
#*doc-module: This text will be added to the module docstring MyTemplate.py*#

6.2 Header Comments

Cheetah comments can also be transformed into module header comments using the following syntax:

##header: This text will be added to the module header comment
#*header: This text will be added to the module header comment *#

Note the difference between##doc-module: andheader: : “cheetah-compile” puts##doc-module:
text inside the module docstring.header: makes the text goabovethe docstring, as a set of #-prefixed comment
lines.

6.2 Header Comments 33

7 Generating, Caching and Filtering Output

7.1 Output from complex expressions: #echo

Syntax:

#echo EXPR

The#echo directive is used to echo the output from expressions that can’t be written as simple $placeholders.

Here is my #echo ’, ’.join([’silly’]*5) # example

This produces:

Here is my silly, silly, silly, silly, silly example.

7.2 Executing expressions without output: #silent

Syntax:

#silent EXPR

#silent is the opposite of#echo . It executes an expression but discards the output.

#silent $myList.reverse()
#silent $myList.sort()
Here is #silent $covertOperation() # nothing

If your template requires some Python code to be executed at the beginning; (e.g., to calculate placeholder values,
access a database, etc), you can put it in a ”doEverything” method you inherit, and call this method using#silent
at the top of the template.

7.3 One-line #if

Syntax:

#if EXPR1 then EXPR2 else EXPR3#

The#if flow-control directive (section 9.4) has a one-line counterpart akin to Perl’s and C’s?: operator. IfEXPR1
is true, it evaluatesEXPR2and outputs the result (just like#echo EXPR2#). Otherwise it evaluatesEXPR3and
outputs that result. This directive is short-circuiting, meaning the expression that isn’t needed isn’t evaluated.

You MUST include both ’then’ and ’else’. If this doesn’t work for you or you don’t like the style use multi-line#if
directives (section 9.4).

34 7 Generating, Caching and Filtering Output

The trailing# is the normal end-of-directive character. As usual it may be omitted if there’s nothing after the directive
on the same line.

7.4 Caching Output

Caching individual placeholders

By default, the values of each $placeholder is retrieved and interpolated for every request. However, it’s possible to
cache the values of individual placeholders if they don’t change very often, in order to speed up the template filling.

To cache the value of a single$placeholder , add an asterisk after the $; e.g.,$*var . The first time the template
is filled, $var is looked up. Then whenever the template is filled again, the cached value is used instead of doing
another lookup.

The $* format caches “forever”; that is, as long as the template instance remains in memory. It’s also possible to
cache for a certain time period using the form$*<interval>*variable , where<interval> is the interval.
The time interval can be specified in seconds (5s), minutes (15m), hours (3h), days (2d) or weeks (1.5w). The default
is minutes.

<HTML>
<HEAD><TITLE>$title</TITLE></HEAD>
<BODY>

$var ${var} ## dynamic - will be reinterpolated for each request
$*var2 $*{var2} ## static - will be interpolated only once at start-up
$*5*var3 $*5*{var3} ## timed refresh - will be updated every five minutes.

</BODY>
</HTML>

Note that “every five minutes” in the example really means every five minutes: the variable is looked up again when
the time limit is reached, whether the template is being filled that frequently or not. Keep this in mind when setting
refresh times for CPU-intensive or I/O intensive operations.

If you’re using the long placeholder syntax,${} , the braces go only around the placeholder name:
$*.5h*{var.func(’arg’)} .

Sometimes it’s preferable to explicitly invalidate a cached item whenever you say so rather than at certain time inter-
vals. You can’t do this with individual placeholders, but you can do it with cached regions, which will be described
next.

Caching entire regions

Syntax:

#cache [id=EXPR] [timer=EXPR] [test=EXPR]
#end cache

The#cache directive is used to cache a region of content in a template. The region is cached as a single unit, after
placeholders and directives inside the region have been evaluated. If there are any$*<interval>*var placholders
inside the cache region, they are refreshed only whenboth the cache regionand the placeholder are simultaneously
due for a refresh.

7.4 Caching Output 35

Caching regions offers more flexibility than caching individual placeholders. You can specify the refresh interval using
a placeholder or expression, or refresh according to other criteria rather than a certain time interval.

#cache without arguments caches the region statically, the same way as$*var . The region will not be automatically
refreshed.

To refresh the region at an interval, use thetimer=EXPRESSION argument, equivalent to$*<interval>* . The
expression should evaluate to a number or string that is a valid interval (e.g., 0.5, ’3m’, etc).

To refresh whenever an expression is true, usetest=EXPRESSION . The expression can be a method/function re-
turning true or false, a boolean placeholder, several of these joined byand and/oror , or any other expression. If the
expression contains spaces, it’s easier to read if you enclose it in() , but this is not required.

To refresh whenever you say so, useid=EXPRESSION. Your program can then call.refreshCache(ID) when-
ever it wishes. This is useful if the cache depends on some external condition that changes infrequently but has just
changed now.

You can combine arguments by separating them with commas. For instance, you can specify bothid= and
interval= , or id= and test= . (You can also combine interval and test although it’s not very useful.) How-
ever, repeating an argument is undefined.

#cache
This is a static cache. It will not be refreshed.
$a $b $c
#end cache

#cache timer=’30m’, id=’cache1’
#for $cust in $customers
$cust.name:
$cust.street - $cust.city
#end for
#end cache

#cache id=’sidebar’, test=$isDBUpdated
... left sidebar HTML ...
#end cache

#cache id=’sidebar2’, test=($isDBUpdated or $someOtherCondition)
... right sidebar HTML ...
#end cache

The#cache directive cannot be nested.

We are planning to add a’varyBy’ keyword argument in the future that will allow a separate cache instances to
be created for a variety of conditions, such as different query string parameters or browser types. This is inspired by
ASP.net’s varyByParam and varyByBrowser output caching keywords.

7.5 #raw

Syntax:

#raw
#end raw

Any section of a template definition that is inside a#raw ...#end raw tag pair will be printed verbatim without
any parsing of $placeholders or other directives. This can be very useful for debugging, or for Cheetah examples and

36 7 Generating, Caching and Filtering Output

tutorials.

#raw is conceptually similar to HTML’s<PRE>tag and LaTeX’s
verbatim{} tag, but unlike those tags,#raw does not cause the body to appear in a special font or typeface. It
can’t, because Cheetah doesn’t know what a font is.

7.6 #include

Syntax:

#include [raw] FILENAME_EXPR
#include [raw] source=STRING_EXPR

The #include directive is used to include text from outside the template definition. The text can come from an
external file or from a$placeholder variable. When working with external files, Cheetah will monitor for changes
to the included file and update as necessary.

This example demonstrates its use with external files:

#include "includeFileName.txt"

The content of ”includeFileName.txt” will be parsed for Cheetah syntax.

And this example demonstrates use with$placeholder variables:

#include source=$myParseText

The value of$myParseText will be parsed for Cheetah syntax. This is not the same as simply placing the $place-
holder tag “$myParseText ” in the template definition. In the latter case, the value of $myParseText would not be
parsed.

By default, included text will be parsed for Cheetah tags. The argument “raw ” can be used to suppress the parsing.

#include raw "includeFileName.txt"
#include raw source=$myParseText

Cheetah wraps each chunk of#include text inside a nestedTemplate object. Each nested template has a copy
of the main template’s searchList. However,#set variables are visible across includes only if the defined using the
#set global keyword.

All directives must be balanced in the include file. That is, if you start a#for or #if block inside the include, you
must end it in the same include. (This is unlike PHP, which allows unbalanced constructs in include files.)

7.7 #slurp

Syntax:

#slurp

The#slurp directive eats up the trailing newline on the line it appears in, joining the following line onto the current

7.6 #include 37

line.

It is particularly useful in#for loops:

#for $i in range(5)
$i #slurp
#end for

outputs:

0 1 2 3 4

7.8 #indent

This directive is not implemented yet. When/if it’s completed, it will allow you to

1. indent your template definition in a natural way (e.g., the bodies of#if blocks) without affecting the output

2. add indentation to output lines without encoding it literally in the template definition. This will make it easier
to use Cheetah to produce indented source code programmatically (e.g., Java or Python source code).

There is some experimental code that recognizes the#indent directive with options, but the options are purposely
undocumented at this time. So pretend it doesn’t exist. If you have a use for this feature and would like to see it
implemented sooner rather than later, let us know on the mailing list.

The latest specification for the future#indent directive is in the TODO file in the Cheetah source distribution.

7.9 Ouput Filtering and #filter

Syntax:

#filter FILTER_CLASS_NAME
#filter $PLACEHOLDER_TO_A_FILTER_INSTANCE
#filter None

Output from $placeholders is passed through an ouput filter. The default filter merely returns a string representation
of the placeholder value, unless the value isNone, in which case the filter returns an empty string. Only top-level
placeholders invoke the filter; placeholders inside expressions do not.

Certain filters take optional arguments to modify their behaviour. To pass arguments, use the long placeholder syntax
and precede each filter argument by a comma. By convention, filter arguments don’t take a$ prefix, to avoid clutter
in the placeholder tag which already has plenty of dollar signs. For instance, the MaxLen filter takes an argument
’maxlen’:

${placeholderName, maxlen=20}
${functionCall($functionArg), maxlen=$myMaxLen}

To change the output filter, use the’filter’ keyword to theTemplate class constructor, or the#filter di-
rective at runtime (details below). You may use#filter as often as you wish to switch between several filters, if
certain$placeholders need one filter and other$placeholders need another.

38 7 Generating, Caching and Filtering Output

The standard filters are in the moduleCheetah.Filters . Cheetah currently provides:

Filter
The default filter, which converts None to ” and everything else tostr(whateverItIs) . This is the base
class for all other filters, and the minimum behaviour for all filters distributed with Cheetah.

ReplaceNone
Same.

MaxLen
Same, but truncate the value if it’s longer than a certain length. Use the ’maxlen’ filter argument to specify the
length, as in the examples above. If you don’t specify ’maxlen’, the value will not be truncated.

Pager
Output a ”pageful” of a long string. After the page, output HTML hyperlinks to the previous and next pages.
This filter uses several filter arguments and environmental variables, which have not been documented yet.

WebSafe
Same as default, but convert HTML-sensitive characters (’<’, ’&’, ’ >’) to HTML entities so that the browser
will display them literally rather than interpreting them as HTML tags. This is useful with database values or
user input that may contain sensitive characters. But if your values contain embedded HTML tags you want to
preserve, you do not want this filter.

The filter argument ’also’ may be used to specify additional characters to escape. For instance, say you want to
ensure a value displays all on one line. Escape all spaces in the value with ’ ’, the non-breaking space:

${$country, also=’ ’}}

To switch filters using a class object, pass the class using thefilter argument to the Template constructor, or
via a placeholder to the#filter directive: #filter $myFilterClass . The class must be a subclass of
Cheetah.Filters.Filter . When passing a class object, the value offiltersLib does not matter, and it does
not matter where the class was defined.

To switch filters by name, pass the name of the class as a string using thefilter argument to the Template constructor,
or as a bare word (without quotes) to the#filter directive:#filter TheFilter . The class will be looked up
in thefiltersLib .

The filtersLib is a module containing filter classes, by defaultCheetah.Filters . All classes in the module that
are subclasses ofCheetah.Filters.Filter are considered filters. If your filters are in another module, pass the
module object as thefiltersLib argument to the Template constructor.

Writing a custom filter is easy: just override the.filter method.

def filter(self, val, **kw): # Returns a string.

Return thestring that should be output for ‘val’. ‘val’ may be any type. Most filters return ‘’ forNone. Cheetah
passes one keyword argument:kw[’rawExpr’] is the placeholder name as it appears in the template definition,
including all subscripts and arguments. If you use the long placeholder syntax, any options you pass appear as keyword
arguments. Again, the return value must be a string.

You can always switch back to the default filter this way:#filter None . This is easy to remember because ”no
filter” means the default filter, and because None happens to be the only object the default filter treats specially.

We are considering additional filters; seehttp://webware.colorstudy.net/twiki/bin/view/Cheetah/MoreFilters for the latest
ideas.

7.9 Ouput Filtering and #filter 39

8 Import, Inheritance, Declaration and Assignment

8.1 #import and #from directives

Syntax:

#import MODULE_OR_OBJECT [as NAME] [, ...]
#from MODULE import MODULE_OR_OBJECT [as NAME] [, ...]

The#import and#from directives are used to make external Python modules or objects available to placeholders.
The syntax is identical to the import syntax in Python. Imported modules are visible globally to all methods in the
generated Python class.

#import math
#import math as mathModule
#from math import sin, cos
#from math import sin as _sin
#import random, re
#from mx import DateTime # ## Part of Egenix’s mx package.

After the above imports,$math , $mathModule , $sin , $cos and$ sin , $random , $re and$DateTime may
be used in$placeholders and expressions.

8.2 #extends

Syntax:

#extends CLASS

All templates are subclasses ofCheetah.Template.Template . However, it’s possible for a template to subclass
another template or a pure Python class. This is where#extends steps in: it specifies the parent class. It’s equivalent
to PSP’s‘‘@page extends=’’ directive.

Cheetah imports the class mentioned in an#extends directive automatically if you haven’t imported it yet. The
implicit importing works like this:

#extends Superclass
Implicitly does ’#from Superclass import Superclass’.

#extends Cheetah.Templates.SkeletonPage
Implicitly does ’#from Cheetah.Templates.SkeletonPage import SkeletonPage’.

If your superclass is in an unusual location or in a module named differently than the class, you must import it
explicitly. There is no support for extending from a class that is not imported; e.g., from a template dynamically
created from a string. Since the most practical way to get a parent template into a module is to precompile it, all parent
templates essentially have to be precompiled.

There can be only one#extends directive in a template and it may list only one class. In other words, templates
don’t do multiple inheritance. This is intentional: it’s too hard to initialize multiple base classes correctly from inside

40 8 Import, Inheritance, Declaration and Assignment

a template. However, you can do multiple inheritance in your pure Python classes.

If your pure Python class overrides any of the standardTemplate methods such as. init or .awake , be
sure to call the superclass method in your method or things will break. Examples of calling the superclass method are
in section 13.4. A list of all superclass methods is in section 13.5.

In all cases, the root superclass must beTemplate . If your bottommost class is a template, simply omit the
#extends in it and it will automatically inherit fromTemplate . If your bottommost class is a pure Python class,
it must inherit fromTemplate explicitly:

from Cheetah.Template import Template
class MyPurePythonClass(Template):

If you’re not keen about having your Python classes inherit fromTemplate , create a tiny glue class that inherits both
from your class and fromTemplate .

Before giving any examples we’ll stress that Cheetah doesnot dictate how you should structure your inheritance tree.
As long as you follow the rules above, many structures are possible.

Here’s an example for a large web site that has not only a general site template, but also a template for this section of the
site, and then a specific template-servlet for each URL. (This is the “inheritance approach” discussed in the Webware
chapter.) Each template inherits from a pure Python class that contains methods/attributes used by the template. We’ll
begin with the bottommost superclass and end with the specific template-servlet:

1. SiteLogic.py (pure Python class containing methods for the site)
from Cheetah.Template import Template
class SiteLogic(Template):

2. Site.tmpl/py (template containing the general site framework;
this is the template that controls the output,
the one that contains "<HTML><HEAD>...", the one
that contains text outside any #def/#block.)

#from SiteLogic import SiteLogic
#extends SiteLogic
#implements respond

3. SectionLogic.py (pure Python class with helper code for the section)
from Site import Site
class SectionLogic(Site)

4. Section.tmpl/py (template with ’#def’ overrides etc. for the section)
#from SectionLogic import SectionLogic
#extends SectionLogic

5. page1Logic.py (pure Python class with helper code for the template-servlet)
from Section import Section
class indexLogic(Section):

6. page1.tmpl/py (template-servlet for a certain page on the site)
#from page1Logic import page1Logic
#extends page1Logic

A pure Python classes might also contain methods/attributes that aren’t used by their immediate child template, but
are available for any descendant template to use if it wishes. For instance, the site template might have attributes for
the name and e-mail address of the site administrator, ready to use as $placeholders in any template that wants it.

Whenever you use#extends , you often need#implements too, as in step 2 above. Read the next section to
understand what#implements is and when to use it.

8.2 #extends 41

8.3 #implements

Syntax:

#implements METHOD

You can call any#def or #block method directly and get its outpt. The top-level content – all the
text/placeholders/directives outside any#def /#block – gets concatenated and wrapped in a “main method”, by
default .respond() . So if you call .respond() , you get the “whole template output”. When Webware calls
.respond() , that’s what it’s doing. And when you do ’print t’ or ’str(t)’ on a template instance, you’re taking
advantage of the fact that Cheetah makes. str () an alias for the main method.

That’s all fine and dandy, but what if your application prefers to call another method name rather than.respond() ?
What if it wants to call, say,.send output() instead? That’s where#implements steps in. It lets you choose
the name for the main method. Just put this in your template definition:

#implements send_output

When one template extends another, every template in the inheritance chain has its own main method. To fill the
template, you invoke exactly one of these methods and the others are ignored. The method you call may be in any
of the templates in the inheritance chain: the base template, the leaf template, or any in between, depending on how
you structure your application. So you have two problems: (1) calling the right method name, and (2) preventing an
undesired same-name subclass method from overriding the one you want to call.

Cheetah assumes the method you will call is.respond() because that’s what Webware calls. It further assumes the
desired main method is the one in the lowest-level base template, because that works well with#block as described
in the Inheritance Approach for building Webware servlets (section 14.2), which was originally the principal use for
Cheetah. So when you use#extends , Cheetah changes that template’s main method to.writeBody() to get it
out of the way and prevent it from overriding the base template’s.respond() .

Unfortunately this assumption breaks down if the template is used in other ways. For instance, you may want to
use the main method in the highest-level leaf template, and treat the base template(s) as merely a library of meth-
ods/attributes. In that case, the leaf template needs#implements respond to change its main method name
back to.respond() (or whatever your application desires to call). Likewise, if your main method is in one of the
intermediate templates in an inheritance chain, that template needs#implements respond .

The other way the assumption breaks down is if the main methodis in the base template but that template extends a pure
Python class. Cheetah sees the#extends and dutifully but incorrectly renames the method to.writeBody() ,
so you have to use#implements respond to change it back. Otherwise the dummy.respond() in
Cheetah.Template is found, which outputs... nothing.So if you’re using #extends and get no output,
the first thing you should think is, “Do I need to add #implements respond somewhere?”

8.4 #set

Syntax:

#set [global] $var = EXPR

#set is used to create and update local variables at run time. The expression may be any Python expression. Remem-
ber to preface variable names with $ unless they’re part of an intermediate result in a list comprehension.

Here are some examples:

42 8 Import, Inheritance, Declaration and Assignment

#set $size = $length * 1096
#set $buffer = $size + 1096
#set $area = $length * $width
#set $namesList = [’Moe’,’Larry’,’Curly’]
#set $prettyCountry = $country.replace(’ ’, ’ ’)

#set variables are useful to assign a short name to a$deeply.nested.value , to a calculation, or to a printable
version of a value. The last example above converts any spaces in the ’country’ value into HTML non-breakable-space
entities, to ensure the entire value appears on one line in the browser.

#set variables are also useful in#if expressions, but remember that complex logical routines should be coded in
Python, not in Cheetah!

#if $size > 1500
#set $adj = ’large’

#else
#set $adj = ’small’

#end if

Or Python’s one-line equivalent, ”A and B or C”. Remember that in this case, B must be a true value (not None, ”, 0,
[] or).

#set $adj = $size > 1500 and ’large’ or ’small’

(Note: Cheetah’s one-line#if will not work for this, since it produces output rather than setting a variable.

You can also use the augmented assignment operators:

Increment $a by 5.
#set $a += 5

By default,#set variables are not visible in method calls or include files unless you use theglobal attribute:#set
global $var = EXPRESSION . Global variables are visible in all methods, nested templates and included files.
Use this feature with care to prevent surprises.

8.5 #del

Syntax:

#del $var

#del is the opposite of#set . It deletes alocal variable. Its usage is just like Python’sdel statement:

#del $myVar
#del $myVar, $myArray[5]

Only local variables can be deleted. There is no directive to delete a#set global variable, a searchList variable,
or any other type of variable.

8.5 #del 43

8.6 #attr

Syntax:

#attr $var = EXPR

The#attr directive creates class attributes in the generated Python class. It should be used to assign simple Python
literals such as numbers or strings. In particular, the expression mustnot depend on searchList values or#set
variables since those are not known at compile time.

#attr $title = "Rob Roy"
#attr $author = "Sir Walter Scott"
#attr $version = 123.4

This template or any child template can output the value thus:

$title, by $author, version $version

If you have a library of templates derived from etexts (http://www.gutenberg.org/), you can extract the titles and authors
and put them in a database (assuming the templates have been compiled into .py template modules):

8.7 #def

Syntax:

#def METHOD[(ARGUMENTS)]
#end def

Or the one-line variation:

#def METHOD[(ARGUMENTS)] : TEXT_AND_PLACEHOLDERS

The#def directive is used to define new methods in the generated Python class, or to override superclass methods.
It is analogous to Python’sdef statement. The directive is silent, meaning it does not itself produce any output.
However, the content of the method will be inserted into the output (and the directives executed) whenever the method
is later called by a $placeholder.

#def myMeth()
This is the text in my method
$a $b $c(123) ## these placeholder names have been defined elsewhere
#end def

and now use it...
$myMeth()

The arglist and parentheses can be omitted:

44 8 Import, Inheritance, Declaration and Assignment

#def myMeth
This is the text in my method
$a $b $c(123)
#end def

and now use it...
$myMeth

Methods can have arguments and have defaults for those arguments, just like in Python. Remember the$ before
variable names:

#def myMeth($a, $b=1234)
This is the text in my method
$a - $b
#end def

and now use it...
$myMeth(1)

The output from this last example will be:

This is the text in my method
1 - 1234

There is also a single line version of the#def directive. Unlike the multi-line directives, it uses a colon (:) to
delimit the method signature and body:

#attr $adj = ’trivial’
#def myMeth: This is the $adj method
$myMeth

Leading and trailing whitespace is stripped from the method. This is in contrast to:

#def myMeth2
This is the $adj method
#end def

where the method includes a newline after ”method”. If you don’t want the newline, add#slurp :

#def myMeth3
This is the $adj method#slurp
#end def

Because#def is handled at compile time, it can appear above or below the placeholders that call it. And if a superclass
placeholder calls a method that’s overridden in a subclass, it’s the subclass method that will be called.

8.8 #block ... #end block

8.8 #block ... #end block 45

The #block directive allows you to mark a section of your template that can be selectively reimplemented in a
subclass. It is very useful for changing part of a template without having to copy-paste-and-edit the entire thing. The
output from a template definition that uses blocks will be identical to the output from the same template with the
#block ...#end block tags removed.

(Note: don’t be confused by the generic word ‘block” in this Guide, which means a section of code insideany#TAG
...#end TAG pair. Thus, an if-block, for-block, def-block, block-block etc. In this section we are talking only of
block-blocks.)

To reimplement the block, use the#def directive. The magical effect is that it appears to go back and change the
output textat the point the original block was definedrather than at the location of the reimplementation.

#block testBlock
Text in the contents
area of the block directive
#if $testIt
$getFoo()
#end if
#end block testBlock

You can repeat the block name in the#end block directive or not, as you wish.

#block directives can be nested to any depth.

#block outerBlock
Outer block contents

#block innerBlock1
inner block1 contents
#end block innerBlock1

#block innerBlock2
inner block2 contents
#end block innerBlock2

#end block outerBlock

Note that the name of the block is optional for the#end block tag.

Technically,#block directive is equivalent to a#def directive followed immediately by a#placeholder for the
same name. In fact, that’s what Cheetah does. Which means you can use$theBlockName elsewhere in the template
to output the block content again.

There is a one-line#block syntax analagous to the one-line#def .

The block must not require arguments because the implicit placeholder that’s generated will call the block without
arguments.

46 8 Import, Inheritance, Declaration and Assignment

9 Flow Control

9.1 #for ... #end for

Syntax:

#for $var in EXPR
#end for

The #for directive iterates through a sequence. The syntax is the same as Python, but remember the$ before
variables.

Here’s a simple client listing:

<TABLE>
#for $client in $service.clients
<TR>
<TD>$client.surname, $client.firstname</TD>
<TD>$client.email</TD>
</TR>
#end for
</TABLE>

Here’s how to loop through the keys and values of a dictionary:

<PRE>
#for $key, $value in $dict.items()
$key: $value
#end for
</PRE>

Here’s how to create list of numbers separated by hyphens. This “#end for” tag shares the last line to avoid introducing
a newline character after each hyphen.

#for $i in range(15)
$i - #end for

If the location of the#end for offends your sense of indentational propriety, you can do this instead:

#for $i in $range(15)
$i - #slurp
#end for

The previous two examples will put an extra hyphen after last number. Here’s how to get around that problem, using
the#set directive, which will be dealt with in more detail below.

47

#set $sep = ’’
#for $name in $names
sepname
#set $sep = ’, ’
#end for

Although to just put a separator between strings, you don’t need a for loop:

#echo ’, ’.join($names)

9.2 #repeat ... #end repeat

Syntax:

#repeat EXPR
#end repeat

Do something a certain number of times. The argument may be any numeric expression. If it’s zero or negative, the
loop will execute zero times.

#repeat $times + 3
She loves me, she loves me not.
#repeat
She loves me.

Inside the loop, there’s no way to tell which iteration you’re on. If you need a counter variable, use#for instead with
Python’srange function. Since Python’s ranges are base 0 by default, there are two ways to start counting at 1. Say
we want to count from 1 to 5, and that$count is 5.

#for $i in $range($count)
#set $step = $i + 1
$step. Counting from 1 to $count.
#end for

#for $i in $range(1, $count + 1)
$i. Counting from 1 to $count.
#end for

A previous implementation used a local variable$i as the repeat counter. However, this prevented instances of
#repeat from being nested. The current implementation does not have this problem as it uses a new local variable
for every instance of#repeat .

9.3 #while ... #end while

Syntax:

48 9 Flow Control

#while EXPR
#end while

#while is the same as Python’swhile statement. It may be followed by any boolean expression:

#while $someCondition(’arg1’, $arg2)
The condition is true.
#end while

Be careful not to create an infinite loop.#while 1 will loop until the computer runs out of memory.

9.4 #if ... #else if ... #else ... #end if

Syntax:

#if EXPR
#else if EXPR
#elif EXPR
#else
#end if

The #if directive and its kin are used to display a portion of text conditionally.#if and#else if should be
followed by a true/false expression, while#else should not. Any valid Python expression is allowed. As in Python,
the expression is true unless it evaluates to 0, ”, None, an empty list, or an empty dictionary. In deference to Python,
#elif is accepted as a synonym for#else if .

Here are some examples:

#if $size >= 1500
It’s big
#else if $size < 1500 and $size > 0
It’s small
#else
It’s not there
#end if

#if $testItem($item)
The item $item.name is OK.
#end if

Here’s an example that combines an#if tag with a#for tag.

9.4 #if ... #else if ... #else ... #end if 49

#if $people
<table>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
#for $p in $people
<tr>
<td>$p.name</td>
<td>$p.address</td>
<td>$p.phone</td>
</tr>
#end for
</table>
#else
<p> Sorry, the search did not find any people. </p>
#end if

See section 7.3 for the one-line#if directive, which is equivalent to Perl’s and C’s?: operator.

9.5 #unless ... #end unless

Syntax:

#unless EXPR
#end unless

#unless is the opposite of#if : the text is executed if the condition isfalse. Sometimes this is more convenient.
#unless EXPR is equivalent to#if not (EXPR) .

#unless $alive
This parrot is no more! He has ceased to be!
’E’s expired and gone to meet ’is maker! ...
THIS IS AN EX-PARROT!!
#end unless

You cannot use#else if or #else inside an#unless construct. If you need those, use#if instead.

9.6 #break and #continue

Syntax:

#break
#continue

These directives are used as in Python.#break will exit a #for loop prematurely, while#continue will immedi-
ately jump to the next iteration in the#for loop.

In this example the output list will not contain “10 - ”.

50 9 Flow Control

#for $i in range(15)
#if $i == 10

#continue
#end if
$i - #slurp
#end for

In this example the loop will exit if it finds a name that equals ’Joe’:

#for $name in $names
#if $name == ’Joe’

#break
#end if
$name - #slurp
#end for

9.7 #pass

Syntax:

#pass

The #pass directive is identical to Pythonpass statement: it does nothing. It can be used when a statement is
required syntactically but the program requires no action.

The following example does nothing if only $A is true

#if $A and $B
do something

#elif $A
#pass

#elif $B
do something

#else
do something

#end if

9.8 #stop

Syntax:

#stop

The#stop directive is used to stop processing of a template at a certain point. The output will showonly what has
been processed up to that point.

When#stop is called inside an#include it skips the rest of the included code and continues on from after the

9.7 #pass 51

#include directive. stop the processing of the included code. Likewise, when#stop is called inside a#def or
#block , it stops only the#def or #block .

A cat
#if 1

sat on a mat
#stop
watching a rat

#end if
in a flat.

will print

A cat
sat on a mat

And

A cat
#block action

sat on a mat
#stop
watching a rat

#end block
in a flat.

will print

A cat
sat on a mat

in a flat.

9.9 #return

Syntax:

#return

This is used as in Python.#return will exit the current method with a default return value ofNone or the value
specified. It may be used only inside a#def or a#block .

Note that#return is different from the#stop directive, which returns the sum of all text output from the method
in which it is called. The following examples illustrate this point:

52 9 Flow Control

1
$test[1]
3
#def test
1.5
#if 1
#return ’123’
#else
99999
#end if
#end def

will produce

1
2
3

while

1
$test
3
#def test
1.5
#if 1
#stop
#else
99999
#end if
#end def

will produce

1
1.5
3

9.9 #return 53

10 Error Handling

There are two ways to handle runtime errors (exceptions) in Cheetah. The first is with the Cheetah directives that mirror
Python’s structured exception handling statements. The second is with Cheetah’sErrorCatcher framework. These
are described below.

10.1 #try ... #except ... #end try, #finally, and #assert

Cheetah’s exception-handling directives are exact mirrors Python’s exception-handling statements. See Python’s doc-
umentation for details. The following Cheetah code demonstrates their use:

#try
$mightFail()

#except
It failed

#end try

#try
#assert $x == $y

#except AssertionError
They’re not the same!

#end try

#try
#raise ValueError

#except ValueError
#pass

#end try

#try
$mightFail()

#except ValueError
Hey, it raised a ValueError!

#except NameMapper.NotFound
Hey, it raised a NameMapper.NotFound!

#else
It didn’t raise anything!

#end try

#try
$mightFail()

#finally
$cleanup()

#end try

Like Python,#except and#finally cannot appear in the same try-block, but can appear in nested try-blocks.

10.2 #errorCatcher and ErrorCatcher objects

Syntax:

54 10 Error Handling

#errorCatcher CLASS
#errorCatcher $PLACEHOLDER_TO_AN_ERROR_CATCHER_INSTANCE

ErrorCatcher is a debugging tool that catches exceptions that occur inside$placeholder tags and
provides a customizable warning to the developer. Normally, the first missing namespace value raises a
NameMapper.NotFound error and halts the filling of the template. This requires the developer to resolve the
exceptions in order without seeing the subsequent output. When anErrorCatcher is enabled, the developer can
see all the exceptions at once as well as the template output around them.

TheCheetah.ErrorCatchers module defines the base class for ErrorCatchers:

class ErrorCatcher:
_exceptionsToCatch = (NameMapper.NotFound,)

def __init__(self, templateObj):
pass

def exceptions(self):
return self._exceptionsToCatch

def warn(self, exc_val, code, rawCode, lineCol):
return rawCode

This ErrorCatcher catchesNameMapper.NotFound exceptions and leaves the offending placeholder visible in its
raw form in the template output. If the following template is executed:

#errorCatcher Echo
#set $iExist = ’Here I am!’
Here’s a good placeholder: $iExist
Here’s bad placeholder: $iDontExist

the output will be:

Here’s a good placeholder: Here I am!
Here’s bad placeholder: $iDontExist

The base class shown above is also accessible under the aliasCheetah.ErrorCatchers.Echo .
Cheetah.ErrorCatchers also provides a number of specialized subclasses that warn about exceptions in differ-
ent ways.Cheetah.ErrorCatchers.BigEcho will output

Here’s a good placeholder: Here I am!
Here’s bad placeholder: ===============<$iDontExist could not be found>===============

ErrorCatcher has a significant performance impact and is turned off by default. It can also be turned on
with the Template class’ ’errorCatcher’ keyword argument. The value of this argument should either
be a string specifying which of the classes inCheetah.ErrorCatchers to use, or a class that subclasses
Cheetah.ErrorCatchers.ErrorCatcher . The#errorCatcher directive can also be used to change the
errorCatcher part way through a template.

10.2 #errorCatcher and ErrorCatcher objects 55

Cheetah.ErrorCatchers.ListErrors will produce the same ouput asEcho while maintaining a list of the
errors that can be retrieved later. To retrieve the list, use theTemplate class’’errorCatcher’ method to retrieve
the errorCatcher and then call itslistErrors method.

ErrorCatcher doesn’t catch exceptions raised inside directives.

56 10 Error Handling

11 Instructions to the Parser/Compiler

11.1 #breakpoint

Syntax:

#breakpoint

#breakpoint is a debugging tool that tells the parser to stop parsing at a specific point. All source code from that
point on will be ignored.

The difference between#breakpoint and#stop is that#stop occurs in normal templates (e.g., inside an#if)
but #breakpoint is used only when debugging Cheetah. Another difference is that#breakpoint operates at
compile time, while#stop is executed at run time while filling the template.

11.2 #compiler-settings

Syntax:

#compiler-settings
key = value (no quotes)
#end compiler-settings

#compiler-settings reset

The #compiler-settings directive overrides Cheetah’s standard settings, changing how it parses source code
and generates Python code. This makes it possible to change the behaviour of Cheetah’s parser/compiler for a certain
template, or within a portion of the template.

Thereset argument reverts to the default settings. Withreset , there’s no end tag.

Here are some examples of what you can do:

$myVar
#compiler-settings
cheetahVarStartToken = @
#end compiler-settings
@myVar
#compiler-settings reset
$myVar

normal comment
#compiler-settings
commentStartToken = //
#end compiler-settings

// new style of comment

#compiler-settings reset

back to normal comments

57

#slurp
#compiler-settings
directiveStartToken = %
#end compiler-settings

%slurp
%compiler-settings reset

#slurp

Here’s a partial list of the settings you can change:

1. syntax settings

(a) cheetahVarStartToken

(b) commentStartToken

(c) multilineCommentStartToken

(d) multilineCommentEndToken

(e) directiveStartToken

(f) directiveEndToken

2. code generation settings

(a) commentOffset

(b) outputRowColComments

(c) defDocStrMsg

(d) useNameMapper

(e) useAutocalling

(f) reprShortStrConstants

(g) reprNewlineThreshold

The meaning of these settings and their default values will be documented in the future.

58 11 Instructions to the Parser/Compiler

12 Fine Control over Cheetah-generated Python modules

12.1 Setting the source code encoding: #encoding

Including

#encoding UTF-8

in your Cheetah.tmpl file will result in

-*- coding: UTF-8 -*-

being appended to the top of the.py module file that Cheetah’s compiler generates.

See http://www.python.org/doc/2.3/whatsnew/section-encodings.html for more details.

12.2 Setting the sh-bang: #shBang

Including

#shBang #!/usr/local/bin/python2.3

in your Cheetah.tmpl file will result in

#!/usr/local/bin/python2.3

being appended to the top of the.py module file that Cheetah’s compiler generates.

The default sh-bang is

#!/usr/bin/env python

59

13 Tips, Tricks and Troubleshooting

This chapter contains short stuff that doesn’t fit anywhere else.

See the Cheetah FAQ for more specialized issues and for troubleshooting tips. Check the wiki periodically for recent
tips contributed by users. If you get stuck and none of these resources help, ask on the mailing list.

13.1 Placeholder Tips

Here’s how to do certain important lookups that may not be obvious. For each, we show first the Cheetah expression
and then the Python equivalent, because you can use these either in templates or in pure Python subclasses. The
Cheetah examples use NameMapper shortcuts (uniform dotted notation, autocalling) as much as possible.

To verify whether a variable exists in the searchList:

$varExists(’theVariable’)
self.varExists(’theVariable’)

This is useful in#if or #unless constructs to avoid a#NameMapper.NotFound error if the variable doesn’t
exist. For instance, a CGI GET parameter that is normally supplied but in this case the user typed the URL by hand
and forgot the parameter (or didn’t know about it). (.hasVar is a synonym for.varExists .)

To look up a variable in the searchList from a Python method:

self.getVar(’theVariable’)
self.getVar(’theVariable’, None)
self.getVar(’theVariable’, myDefault)

This is the equivalent to$theVariable in the template. getVar returns the second argument (None or
myDefault if the variable is missing; or, if there is no second argument, it raises raisesNameMapper.NotFound .
However, it usually easier to write your method so that all needed searchList values come in as method arguments.
That way the caller can just use a $placeholder to specify the argument, which is less verbose than you writing a getVar
call.

To do a “safe” placeholder lookup that returns a default value if the variable is missing:

$getVar(’theVariable’, None)
$getVar(’theVariable’, $myDefault)

To get an environmental variable, putos.environ on the searchList as a container. Or read the envvar in Python
code and set a placeholder variable for it.

Remember that variables found earlier in the searchList override same-name variables located in a later searchList
object. Be careful when adding objects containing other variables besides the ones you want (e.g.,os.environ ,
CGI parameters). The ”other” variables may override variables your application depends on, leading to hard-to-find
bugs. Also, users can inadvertently or maliciously set an environmental variable or CGI parameter you didn’t expect,
screwing up your program. To avoid all this, know what your namespaces contain, and place the namespaces you have
the most control over first. For namespaces that could contain user-supplied ”other” variables, don’t put the namespace
itself in the searchList; instead, copy the needed variables into your own ”safe” namespace.

13.2 Diagnostic Output

If you need send yourself some debugging output, you can use#silent to output it to standard error:

60 13 Tips, Tricks and Troubleshooting

#silent $sys.stderr.write("Incorrigible var is ’$incorrigible’.\n")
#silent $sys.stderr.write("Is ’unknown’ in the searchList? " +

$getVar("unknown", "No.") + "\n")

(Tip contributed by Greg Czajkowski.)

13.3 When to use Python methods

You always have a choice whether to code your methods as Cheetah#def methods or Python methods (the Python
methods being located in a class your template inherits). So how do you choose?

Generally, if the method consists mostly of text and placeholders, use a Cheetah method (a#def method). That’s
why #def exists, to take the tedium out of writing those kinds of methods. And if you have a couple#if stanzas
to #set some variables, followed by a#for loop, no big deal. But if your method consists mostly of directives and
only a little text, you’re better off writing it in Python. Especially be on the watch for extensive use of#set , #echo
and#silent in a Cheetah method–it’s a sure sign you’re probably using the wrong language. Of course, though,
you are free to do so if you wish.

Another thing that’s harder to do in Cheetah is adjacent or nested multiline stanzas (all those directives with an
accompanying#end directive). Python uses indentation to show the beginning and end of nested stanzas, but Cheetah
can’t do that because any indentation shows up in the output, which may not be desired. So unless all those extra
spaces and tabs in the output are acceptable, you have to keep directives flush with the left margin or the preceding
text.

The most difficult decisions come when you have conflicting goals. What if a method generates its output in parts (i.e.,
output concatenation), contains many searchList placeholders and lots of text,and requires lots of#if ...#set
...#else #set ...#end if stanzas. A Cheetah method would be more advantageous in some ways, but a
Python method in others. You’ll just have to choose, perhaps coding groups of methods all the same way. Or maybe
you can split your method into two, one Cheetah and one Python, and have one method call the other. Usually
this means the Cheetah method calling the Python method to calculate the needed values, then the Cheetah method
produces the output. One snag you might run into though is that#set currently can set only one variable per
statement, so if your Python method needs to return multiple values to your Cheetah method, you’ll have to do it
another way.

13.4 Calling superclass methods, and why you have to

If your template or pure Python class overrides a standard method or attribute ofTemplate or one of its base classes,
you should call the superclass method in your method to prevent various things from breaking. The most common
methods to override are.awake and . init . .awake is called automatically by Webware early during the
web transaction, so it makes a convenient place to put Python initialization code your template needs. You’ll definitely
want to call the superclass.awake because it sets up many wonderful attributes and methods, such as those to access
the CGI input fields.

There’s nothing Cheetah-specific to calling superclass methods, but because it’s vital, we’ll recap the standard Python
techniques here.

In Python ¿= 2.2, you can simply do:

13.3 When to use Python methods 61

from Cheetah.Template import Template
class MyClass(Template):
def awake(self, trans):
super(MyClass, self).awake(trans)
... add your own great and exciting features here ...

For Python ¡ 2.2, you have to explicitly name the superclass and call the method as an unbound method:

from Cheetah.Template import Template
from Cheetah.Servlet import Servlet
class MyClass(Template):
def awake(self, trans):
Servlet.awake(self, trans)
... great and exciting features written by me ...

[@@MO: Need to test this. .awake is in Servlet, which is a superclass of Template. Do we really need both imports?
Can we call Template.awake?]

To avoid hardcoding the superclass name in older Python, you can use this functioncallbase() , which emulates
super() for older versions of Python. It also works evensuper() does exist, so you don’t have to change your
servlets immediately when upgrading. Note that the argument sequence is different thansuper uses.

===
Place this in a module SOMEWHERE.py . Contributed by Edmund Lian.
class CallbaseError(AttributeError):

pass

def callbase(obj, base, methodname=’__init__’, args=(), kw={},
raiseIfMissing=None):
try: method = getattr(base, methodname)
except AttributeError:

if raiseIfMissing:
raise CallbaseError, methodname

return None
if args is None: args = ()
return method(obj, *args, **kw)

===
Place this in your class that’s overriding .awake (or any method).
from SOMEWHERE import callbase
class MyMixin:

def awake(self, trans):
args = (trans,)
callbase(self, MyMixin, ’awake’, args)
... everything else you want to do ...

===

13.5 All methods

Here is a list of all the standard methods and attributes that can be accessed from a placeholder. Some of them exist
for you to call, others are mainly used by Cheetah internally but you can call them if you wish, and others are only
for internal use by Cheetah or Webware. Do not use these method names in mixin classes (#extends , section 8.2)
unless you intend to override the standard method.

62 13 Tips, Tricks and Troubleshooting

Variables with a star prefix (*) are frequently used in templates or in pure Python classes.

Inherited from Cheetah.Template

compile(source=None, file=None, moduleName=None, mainMethodName=’respond’)Compile the template.
Automatically called by. init .

generatedModuleCode()Return the module code the compiler generated, orNone if no compilation took place.

generatedClassCode()Return the class code the compiler generated, orNone if no compilation took place.

* searchList() Return a reference to the underlying search list. (a list of objects). Use this to print out your searchList
for debugging. Modifying the returned list will affect your placeholder searches!

* errorCatcher() Return a reference to the current error catcher.

* refreshCache(cacheKey=None)If ’cacheKey’ is notNone, refresh that item in the cache. IfNone, delete all
items in the cache so they will be recalculated the next time they are encountered.

* shutdown() Break reference cycles before discarding a servlet.

* getVar(varName, default=NoDefault, autoCall=True)Look up a variable in the searchList. Same as$varName
but allows you to specify a default value and control whether autocalling occurs.

* varExists(varName, autoCall=True)

* getFileContents(path)Read the named file. If used as a placeholder, inserts the file’s contents in the output without
interpretation, like#include raw . If used in an expression, returns the file’s content (e.g., to assign it to a
variable).

runAsMainProgram() This is what happens if you run a .py template module as a standalone program.

Private methods: bindCompiledMethod, bindFunctionAsMethod, includeCheetahSource,
genTmpFilename, importAsDummyModule , makeDummyPackageForDir, importFromDummyPackage,
importModuleFromDirectory .

Other private attributes:

* fileMtime Time the template definition was modified, in Unix ticks.None if the template definition came from a
string or file handle rather than a named file, same for the next three variables.

* fileDirName The directory containing the template definition.

* fileBaseNameThe basename of the template definition file.

* filePath The directory+filename of the template definition.

Inherited from Cheetah.Utils.WebInputMixin

nonNumericInputError Exception raised by.webInput .

* webInput(...) Convenience method to access GET/POST variables from a Webware servlet or CGI script, or
Webware cookie or session variables. See section 14.7 for usage information.

13.5 All methods 63

Inherited from Cheetah.SettingsManager

setting(name, default=NoDefault)Get a compiler setting.

hasSetting(name)Does this compiler setting exist?

setSetting(name, value)Set setting ’name’ to ’value’. See#compiler-settings , section 11.2.

settings() Return the underlying settings dictionary. (Warning: modifying this dictionary will change Cheetah’s
behavior.)

copySettings()Return a copy of the underlying settings dictionary.

deepcopySettings()Return a deep copy of the underlying settings dictionary. See Python’scopy module.

updateSettings(newSettings, merge=True)Update Cheetah’s compiler settings from the ’newSettings’ dictionary.
If ’merge’ is true, update only the names in newSettings and leave the other names alone. (The SettingsManager
is smart enough to update nested dictionaries one key at a time rather than overwriting the entire old dictionary.)
If ’merge’ is false, delete all existing settings so that the new ones are the only settings.

updateSettingsFromPySrcStr(theString, merge=True)Same, but pass a string ofname=value pairs rather than
a dictionary, the same as you would provide in a#compiler-settings directive, section 11.2.

updateSettingsFromPySrcFile(path, merge=True)Same, but exec a Python source file and use the variables it
contains as the new settings. (e.g.,cheetahVarStartToken = "@").

updateSettingsFromConfigFile(path, **kw) Same, but get the new settings from a text file in ConfigParser format
(similar to Windows’ *.ini file format). See Python’sConfigParser module.

updateSettingsFromConfigFileObjSame, but read the open file object ’inFile’ for the new settings.

updateSettingsFromConfigStr(configStr, convert=True, merge=TrueSame, but read the new settings from a
string in ConfigParser format.

writeConfigFile(path) Write the current compiler settings to a file named ’path’ in *.ini format.

getConfigString()Return a string containing the current compiler settings in *.ini format.

Private methods: createConfigFile.

Private methods inherited fromSettingsCollector in same module:normalizePath, readSettingsFrom-
Container, isContainer, getAllAttrsFromContainer , readSettingsFromPySrcFile, readSettingsFromPySrcStr,
readSettingsFromConfigFile, readSettingsFromConfigFileObj.

Inherited from Cheetah.Servlet Do not override these in a subclass or assign to them as attributes if your template
will be used as a servlet,otherwise Webware will behave unpredictably. However, itis OK to put same-name variables
in the searchList, because Webware does not use the searchList.

EXCEPTION: It’s OK to overrideawakeandsleepas long as you call the superclass methods. (See section 13.4.)

* isControlledByWebKit True if this template instance is part of a live transaction in a running WebKit servlet.

* isWebwareInstalled True if Webware is installed and the template instance inherits from WebKit.Servlet. If not,
it inherits from Cheetah.Servlet.DummyServlet.

* awake(transaction)Called by WebKit at the beginning of the web transaction.

* sleep(transaction)Called by WebKit at the end of the web transaction.

64 13 Tips, Tricks and Troubleshooting

* respond(transaction)Called by WebKit to produce the web transaction content. For a template-servlet, this means
filling the template.

shutdown()Break reference cycles before deleting instance.

* serverSidePath()The filesystem pathname of the template-servlet (as opposed to the URL path).

transaction The current Webware transaction.

application The current Webware application.

responseThe current Webware response.

requestThe current Webware request.

sessionThe current Webware session.

write Call this method to insert text in the filled template output.

Several other goodies are available to template-servlets under therequest attribute, see section 14.7.

transaction , response , request andsession are created from the current transaction when WebKit calls
awake , and don’t exist otherwise. Callingawake yourself (rather than letting WebKit call it) will raise an exception
because thetransaction argument won’t have the right attributes.

Inherited from WebKit.Servlet These are accessible only if Cheetah knows Webware is installed. This listing is
based on a CVS snapshot of Webware dated 22 September 2002, and may not include more recent changes.

The same caveats about overriding these methods apply.

name() The simple name of the class. Used by Webware’s logging and debugging routines.

log() Used by Webware’s logging and debugging routines.

canBeThreaded() True if the servlet can be multithreaded.

canBeReused() True if the servlet can be used for another transaction after the current transaction is finished.

serverSideDir() Depreciated by.serverSidePath() .

Private attributes: serverSitePath. Also apparently application , request , response , session ,
servlet , errorOccurred although I don’t see where they’re defined.

13.6 Optimizing templates

Here are some things you can do to make your templates fill faster and user fewer CPU cycles. Before you put a lot
of energy into this, however, make sure you really need to. In many situations, templates appear to initialize and fill
instantaneously, so no optimization is necessary. If you do find a situation where your templates are filling slowly or
taking too much memory or too many CPU cycles, we’d like to hear about it on the mailing list.

Cache $placeholders whose values don’t change frequently. (Section 7.4).

Use #set for values that are very frequently used, especially if they come out of an expensive operation like a
deeply.nested.structure or a database lookup.#set variables are set to Python local variables, which have a faster
lookup time than Python globals or values from Cheetah’s searchList.

Moving variable lookups into Python code may provide a speedup in certain circumstances. If you’re just reading
self attributes, there’s no reason to use NameMapper lookup ($placeholders) for them. NameMapper does a lot
more work than simply looking up aself attribute.

13.6 Optimizing templates 65

On the other hand, if you don’t know exactly where the value will come from (maybe fromself , maybe from the
searchList, maybe from a CGI input variable, etc), it’s easier to just make that an argument to your method, and then
the template can handle all the NameMapper lookups for you:

#silent $myMethod($arg1, $arg2, $arg3)

Otherwise you’d have to callself.getVar(’arg1’) etc in your method, which is more wordy, and tedious.

13.7 PSP-style tags

<%= ...%> and<%...%> allow an escape to Python syntax inside the template. You do not need it to use Cheetah
effectively, and we’re hard pressed to think of a case to recommend it. Nevertheless, it’s there in case you encounter a
situation you can’t express adequately in Cheetah syntax. For instance, to set a local variable to an elaborate initializer.

<%= ...%> encloses a Python expression whose result will be printed in the output.

<%...%> encloses a Python statement or expression (or set of statements or expressions) that will be included as-is
into the generated method. The statements themselves won’t produce any output, but you can use the local function
write(EXPRESSION) to produce your own output. (Actually, it’s a method of a file-like object, but it looks like a
local function.) This syntax also may be used to set a local variable with a complicated initializer.

To access Cheetah services, you must use Python code like you would in an inherited Python class. For instance, use
self.getVar() to look up something in the searchList.

Warning: No error checking is done!If you write:

<% break %> ## Wrong!

you’ll get aSyntaxError when you fill the template, but that’s what you deserve.

Note that these are PSP-styletags, not PSP tags. A Cheetah template is not a PSP document, and you can’t use PSP
commands in it.

13.8 Makefiles

If your project has several templates and you get sick of typing “cheetah compile FILENAME.tmpl” all the time–
much less remembering which commands to type when–and your system has themake command available, consider
building a Makefile to make your life easier.

Here’s a simple Makefile that controls two templates, ErrorsTemplate and InquiryTemplate. Two external commands,
inquiry andreceive , depend on ErrorsTemplate.py. Aditionally, InquiryTemplate itself depends on ErrorsTem-
plate.

66 13 Tips, Tricks and Troubleshooting

all: inquiry receive

.PHONY: all receive inquiry printsource

printsource:
a2ps InquiryTemplate.tmpl ErrorsTemplate.tmpl

ErrorsTemplate.py: ErrorsTemplate.tmpl
cheetah compile ErrorsTemplate.tmpl

InquiryTemplate.py: InquiryTemplate.tmpl ErrorsTemplate.py
cheetah compile InquiryTemplate.tmpl

inquiry: InquiryTemplate.py ErrorsTemplate.py

receive: ErrorsTemplate.py

Now you can typemake anytime and it will recompile all the templates that have changed, while ignoring the ones
that haven’t. Or you can recompile all the templatesreceive needs by typingmake receive . Or you can
recompile only ErrorsTemplate by typingmake ErrorsTemplate . There’s also another target, “printsource”:
this sends a Postscript version of the project’s source files to the printer. The .PHONY target is explained in themake
documentation; essentially, you have it depend on every target that doesn’t produce an output file with the same name
as the target.

13.9 Using Cheetah in a Multi-Threaded Application

Template classes may be shared freely between threads. However, template instances should not be shared unless you
either:

• Use a lock (mutex) to serialize template fills, to prevent two threads from filling the template at the same time.

• Avoid thread-unsafe features:

– Modifying searchList values or instance variables.

– Caching ($*var , #cache , etc).

– #set global , #filter , #errorCatcher .

Any changes to these in one thread will be visible in other threads, causing them to give inconsistent output.

About the only advantage in sharing a template instance is building up the placeholder cache. But template instances
are so low overhead that it probably wouldn’t take perceptibly longer to let each thread instantiate its own template
instance. Only if you’re filling templates several times a second would the time difference be significant, or if some
of the placeholders trigger extremely slow calculations (e.g., parsing a long text file each time). The biggest overhead
in Cheetah is importing theTemplate module in the first place, but that has to be done only once in a long-running
application.

You can use Python’smutex module for the lock, or any similar mutex. If you have to change searchList values or
instance variables before each fill (which is usually the case), lock the mutex before doing this, and unlock it only after
the fill is complete.

For Webware servlets, you’re probably better off using Webware’s servlet caching rather than Cheetah’s caching.
Don’t override the servlet’s.canBeThreaded() method unless you avoid the unsafe operations listed above.

13.9 Using Cheetah in a Multi-Threaded Application 67

13.10 Using Cheetah with gettext

gettext is a project for creating internationalized applications. For more details, visithttp://docs.python.org/lib/module-
gettext.html. gettext can be used with Cheetah to create internationalized applications, even for CJK character sets, but
you must keep a couple things in mind:

• xgettext is used on compiled templates, not on the templates themselves.

• The way the NameMapper syntax gets compiled to Python gets in the way of the syntax that xgettext recognizes.
Hence, a special case exists for the functions, N , andngettext . If you need to use a different set of
functions for marking strings for translation, you must set the Cheetah settinggettextTokens to a list of
strings representing the names of the functions you are using to mark strings for translation.

68 13 Tips, Tricks and Troubleshooting

14 Using Cheetah with Webware

Webware for Python is a ’Python-Powered Internet Platform’ that runs servlets in a manner similar to Java servlets.
WebKit is the name of Webware’s application server. For more details, please visithttp://webware.sourceforge.net/.

All comments below refer to the official version of Webware, the DamnSimple! offshoot at ?, and the now-abandoned
WebwareExperimental implementation athttp://sourceforge.net/projects/expwebware/, except where noted. All the
implementations are 95% identical to the servlet writer: their differences lie in their internal structure and configuration
files. One difference is that the executable you run to launch standard Webware is calledAppServer , whereas in
WebwareExperimental it’s calledwebkit . But to servlets they’re both ”WebKit, Webware’s application server”, so
it’s one half dozen to the other. In this document, we generally use the termWebKit to refer to the currently-running
application server.

14.1 Installing Cheetah on a Webware system

Install Cheetah after you have installed Webware, following the instructions in chapter 3.

The standard Cheetah test suite (’cheetah test’) does not test Webware features. We plan to build a test suite that can
run as a Webware servlet, containing Webware-specific tests, but that has not been built yet. In the meantime, you can
make a simple template containing something like ”This is a very small template.”, compile it, put the *.py template
module in a servlet directory, and see if Webware serves it up OK.

You must not have a Webware context called ”Cheetah”.If you do, Webware will mistake that directory for the
Cheetah module directory, and all template-servlets will bomb out with a ”ImportError: no module named Template”.
(This applies only to the standard Webware; WebwareExperimental does not have contexts.)

If Webware complains that it cannot find your servlet, make sure ’.tmpl’ is listed in ’ExtensionsToIgnore’ in your
’Application.config’ file.

14.2 Containment vs Inheritance

Because Cheetah’s core is flexible, there are many ways to integrate it with Webware servlets. There are two broad
strategies: theInheritance approach and theContainment approach. The difference is that in the Inheritance
approach, your template objectis the servlet, whereas in the Containment approach, the servlet is not a template but
merelyusestemplate(s) for portion(s) of its work.

The Inheritance approach is recommended for new sites because it’s simpler, and because it scales well for large sites
with a site-¿section-¿subsection-¿servlet hierarchy. The Containment approach is better for existing servlets that you
don’t want to restructure. For instance, you can use the Containment approach to embed a discussion-forum table at
the bottom of a web page.

However, most people who use Cheetah extensively seem to prefer the Inheritance approach because even the most
analytical servlet needs to producesomeoutput, and it has to fit the site’s look and feelanyway, so you may as well
use a template-servlet as the place to put the output. Especially since it’s so easy to add a template-servlet to a site
once the framework is established. So we recommend you at least evaluate the effort that would be required to convert
your site framework to template superclasses as described below, vs the greater flexibility and manageability it might
give the site over the long term. You don’t necessarily have to convert all your existing servlets right away: just build
common site templates that are visually and behaviorally compatible with your specification, and use them for new
servlets. Existing servlets can be converted later, if at all.

Edmund Liam is preparing a section on a hybrid approach, in which the servlet is not a template, but still calls
template(s) in an inheritance chain to produce the output. The advantage of this approach is that you aren’t dealing
with Template methods and Webware methods in the same object.

69

The Containment Approach

In the Containment approach, your servlet is not a template. Instead, it it makes its own arrangements to create and
use template object(s) for whatever it needs. The servlet must explicitly call the template objects’.respond() (or
. str ()) method each time it needs to fill the template. This does not present the output to the user; it merely
gives the output to the servlet. The servlet then calls its#self.response().write() method to send the output
to the user.

The developer has several choices for managing her templates. She can store the template definition in a string, file
or database and callCheetah.Template.Template manually on it. Or she can put the template definition in a
*.tmpl file and usecheetah compile(section 4.2) to convert it to a Python class in a *.py module, and then import it
into her servlet.

Because template objects are not thread safe, you should not store one in a module variable and allow multiple servlets
to fill it simultaneously. Instead, each servlet should instantiate its own template object. Templateclasses, however,
are thread safe, since they don’t change once created. So it’s safe to store a template class in a module global variable.

The Inheritance Approach

In the Inheritance approach, your template object doubles as as Webware servlet, thus these are sometimes called
template-servlets. cheetah compile(section 4.2) automatically creates modules containing valid Webware servlets.
A servlet is a subclass of Webware’sWebKit.HTTPServlet class, contained in a module with the same name as
the servlet. WebKit uses the request URL to find the module, and then instantiates the servlet/template. The servlet
must have a.respond() method (or.respondToGet() , .respondToPut() , etc., but the Cheetah default is
.respond()). Servlets created bycheetah compile meet all these requirements.

(Cheetah has a Webware plugin that automatically converts a.tmpl servlet file into a .py servlet
file when the.tmpl servlet file is requested by a browser. However, that plugin is currently unavailable
because it’s being redesigned. For now, usecheetah compile instead.)

What about logic code? Cheetah promises to keep content (the placeholder values), graphic design (the template
definition and is display logic), and algorithmic logic (complex calculations and side effects) separate. How? Where
do you do form processing?

The answer is that your template class can inherit from a pure Python class containing the analytical logic. You can
either use the#extends directive in Cheetah to indicate the superclass(es), or write a Pythonclass statement to
do the same thing. See the templateCheetah.Templates.SkeletonPage.tmpl and its pure Python class
Cheetah.Templates. SkeletonPage.py for an example of a template inheriting logic code. (See sections
8.2 and 8.3 for more information about#extends and#implements . They have to be used a certain right way.)

If #WebKit.HTTPServlet is not available, Cheetah fakes it with a dummy class to satisfy the dependency. This
allows servlets to be tested on the command line even on systems where Webware is not installed. This works only
with servlets that don’t call back into WebKit for information about the current web transaction, since there is no web
transaction. Trying to access form input, for instance, will raise an exception because it depends on a live web request
object, and in the dummy class the request object isNone.

Because Webware servlets must be valid Python modules, and “cheetah compile” can produce only valid module
names, if you’re converting an existing site that has .html filenames with hyphens (-), extra dots (.), etc, you’ll have to
rename them (and possibly use redirects).

14.3 Site frameworks

Web sites are normally arranged hierarchically, with certain features common to every page on the site, other features
common to certain sections or subsections, and others unique to each page. You can model this easily with a hierarchy
of classes, with specific servlets inheriting from their more general superclasses. Again, you can do this two ways,
using Cheetah’sContainment approach orInheritance approach.

70 14 Using Cheetah with Webware

In the Inheritance approach, parents provide#block s and children override them using#def . Each child#extend s
its immediate parent. Only the leaf servlets need to be under WebKit’s document root directory. The superclass servlets
can live anywhere in the filesystem that’s in the Python path. (You may want to modify your WebKit startup script to
add that library directory to yourPYTHONPATHbefore starting WebKit.)

Section 17.7 contains information on a stock template that simplifies defining the basic HTML structure of your web
page templates.

In the Containment approach, your hierarchy of servlets are not templates, but each uses one or more templates as it
wishes. Children provide callback methods to to produce the various portions of the page that are their responsibility,
and parents call those methods. Webware’sWebKit.Page andWebKit.SidebarPage classes operate like this.

Note that the two approaches are not compatible!WebKit.Page was not designed to intermix with
Cheetah.Templates.SkeletonPage . Choose either one or the other, or expect to do some integration work.

If you come up with a different strategy you think is worth noting in this chapter, let us know.

14.4 Directory structure

Here’s one way to organize your files for Webware+Cheetah.

www/ # Web root directory.
site1.example.com/ # Site subdirectory.

apache/ # Web server document root (for non-servlets).
www/ # WebKit document root.

index.py # http://site1.example.com/
index.tmpl # Source for above.
servlet2.py # http://site1.example.com/servlet2
servlet2.tmpl # Source for above.

lib/ # Directory for helper classes.
Site.py # Site superclass ("#extends Site").
Site.tmpl # Source for above.
Logic.py # Logic class inherited by some template.

webkit.config # Configuration file (for WebwareExperimental).
Webware/ # Standard Webware’s MakeAppWorkDir directory.

AppServer # Startup program (for standard Webware).
Configs/ # Configuration directory (for standard Webware).

Application.config
Configuration file (for standard Webware).

site2.example.org/ # Another virtual host on this computer....

14.5 Initializing your template-servlet with Python code

If you need a place to initialize variables or do calculations for your template-servlet, you can put it in an.awake()
method because WebKit automatically calls that early when processing the web transaction. If you do override
.awake() , be sure to call the superclass.awake method. You probably want to do that first so that you have
access to the web transaction dataServlet.awake provides. You don’t have to worry about whether your parent
class has its own.awake method, just call it anyway, and somebody up the inheritance chain will respond, or at
minimumServlet.awake will respond. Section 13.4 gives examples of how to call a superclass method.

As an alternative, you can put all your calculations in your own method and call it near the top of your template.
(#silent , section 7.2).

14.6 Form processing

14.4 Directory structure 71

There are many ways to display and process HTML forms with Cheetah. But basically, all form processing involves
two steps.

1. Display the form.

2. In the next web request, read the parameters the user submitted, check for user errors, perform any side effects
(e.g., reading/writing a database or session data) and present the user an HTML response or another form.

The second step may involve choosing between several templates to fill (or several servlets to redirect to), or a big
if-elif-elif-else construct to display a different portion of the template depending on the situation.

In the oldest web applications, step 1 and step 2 were handled by separate objects. Step 1 was a static HTML file, and
step 2 was a CGI script. Frequently, a better strategy is to have a single servlet handle both steps. That way, the servlet
has better control over the entire situation, and if the user submits unacceptable data, the servlet can redisplay the form
with a ”try again” error message at the top and and all the previous input filled in. The servlet can use the presence or
absence of certain CGI parameters (e.g., the submit button, or a hidden mode field) to determine which step to take.

One neat way to build a servlet that can handle both the form displaying and form processing is like this:

1. Put your form HTML into an ordinary template-servlet. In each input field, use a placeholder for the value of
theVALUE=attribue. Place another placeholder next to each field, for that field’s error message.

2. Above the form, put a$processFormData method call.

3. Define that method in a Python class your template#extend s. (Or if it’s a simple method, you can define it in
a#def .) The method should:

(a) Get the form input if any.

(b) If the input variable corresponding to the submit field is empty, there is no form input, so we’re showing
the form for the first time. Initialize all VALUE= variables to their default value (usually ””), and all error
variables to ””. Return ””, which will be the value for$processFormData .

(c) If the submit variable is not empty, fill the VALUE= variables with the input data the user just submitted.

(d) Now check the input for errors and put error messages in the error placeholders.

(e) If there were any user errors, return a general error message string; this will be the value for
$processFormData .

(f) If there were no errors, do whatever the form’s job is (e.g., update a database) and return a success message;
this will be the value for$processFormData .

4. The top of the page will show your success/failure message (or nothing the first time around), with the form
below. If there are errors, the user will have a chance to correct them. After a successful submit, the form
will appear again, so the user can either review their entry, or change it and submit it again. Depending on the
application, this may make the servlet update the same database record again, or it may generate a new record.

FunFormKit is a third-party Webware package that makes it easier to produce forms and handle
their logic. It has been successfully been used with Cheetah. You can download FunFormKit from
http://colorstudy.net/software/funformkit/ and try it out for yourself.

14.7 Form input, cookies, session variables and web server variables

General variable tips that also apply to servlets are in section 13.1.

To look up a CGI GET or POST parameter (with POST overriding):

72 14 Using Cheetah with Webware

$request.field(’myField’)
self.request().field(’myField’)

These will fail if Webware is not available, because$request (akaself.request() will be None rather than a
WebwareWebKit.Request object. If you plan to read a lot of CGI parameters, you may want to put the.fields
method into a local variable for convenience:

#set $fields = $request.fields
$fields.myField

But remember to do complicated calculations in Python, and assign the results to simple variables in the searchList for
display. These$request forms are useful only for occasions where you just need one or two simple request items
that going to Python for would be overkill.

To get a cookie or session parameter, subsitute “cookie” or “session” for “field” above. To get a dictionary of all
CGI parameters, substitute “fields” (ditto for “cookies”). To verify a field exists, substitute “hasField” (ditto for
“hasCookie”).

Other useful request goodies:

Defined in WebKit.Request
$request.field(’myField’, ’default value’)
$request.time ## Time this request began in Unix ticks.
$request.timeStamp ## Time in human-readable format (’asctime’ format).
Defined in WebKit.HTTPRequest
$request.hasField.myField ## Is a CGI parameter defined?
$request.fields ## Dictionary of all CGI parameters.
$request.cookie.myCookie ## A cookie parameter (also .hasCookie, .cookies).
$request.value.myValue ## A field or cookie variable (field overrides)

(also .hasValue).
$request.session.mySessionVar # A session variable.
$request.extraURLPath ## URL path components to right of servlet, if any.
$request.serverDictionary ## Dict of environmental vars from web server.
$request.remoteUser ## Authenticated username. HTTPRequest.py source

suggests this is broken and always returns None.
$request.remoteAddress ## User’s IP address (string).
$request.remoteName ## User’s domain name, or IP address if none.
$request.urlPath ## URI of this servlet.
$request.urlPathDir ## URI of the directory containing this servlet.
$request.serverSidePath ## Absolute path of this servlet on local filesystem.
$request.serverURL ## URL of this servlet, without "http://" prefix,

extra path info or query string.
$request.serverURLDir ## URL of this servlet’s directory, without "http://".
$log("message") ## Put a message in the Webware server log. (If you

define your own ’log’ variable, it will override
this; use $self.log("message") in that case.

.webInput()

From the method docstring:

14.7 Form input, cookies, session variables and web server variables 73

def webInput(self, names, namesMulti=(), default=’’, src=’f’,
defaultInt=0, defaultFloat=0.00, badInt=0, badFloat=0.00, debug=False):

This method places the specified GET/POST fields, cookies or session variables
into a dictionary, which is both returned and put at the beginning of the
searchList. It handles:

* single vs multiple values
* conversion to integer or float for specified names
* default values/exceptions for missing or bad values
* printing a snapshot of all values retrieved for debugging

All the ’default*’ and ’bad*’ arguments have "use or raise" behavior, meaning
that if they’re a subclass of Exception, they’re raised. If they’re anything
else, that value is substituted for the missing/bad value.

The simplest usage is:

#silent $webInput([’choice’])
$choice

dic = self.webInput([’choice’])
write(dic[’choice’])

Both these examples retrieves the GET/POST field ’choice’ and print it. If you
leave off the "#silent", all the values would be printed too. But a better way
to preview the values is

#silent $webInput([’name’], $debug=1)

because this pretty-prints all the values inside HTML <PRE> tags.

Since we didn’t specify any coversions, the value is a string. It’s a "single"
value because we specified it in ’names’ rather than ’namesMulti’. Single
values work like this:

* If one value is found, take it.
* If several values are found, choose one arbitrarily and ignore the rest.
* If no values are found, use or raise the appropriate ’default*’ value.

Multi values work like this:
* If one value is found, put it in a list.
* If several values are found, leave them in a list.
* If no values are found, use the empty list ([]). The ’default*’

arguments are *not* consulted in this case.

Example: assume ’days’ came from a set of checkboxes or a multiple combo box
on a form, and the user chose "Monday", "Tuesday" and "Thursday".

#silent $webInput([], [’days’])
The days you chose are: #slurp
#for $day in $days
$day #slurp
#end for

dic = self.webInput([], [’days’])
write("The days you chose are: ")
for day in dic[’days’]:

write(day + " ")

Both these examples print: "The days you chose are: Monday Tuesday Thursday".

By default, missing strings are replaced by "" and missing/bad numbers by zero.
(A "bad number" means the converter raised an exception for it, usually because
of non-numeric characters in the value.) This mimics Perl/PHP behavior, and
simplifies coding for many applications where missing/bad values *should* be
blank/zero. In those relatively few cases where you must distinguish between
""/zero on the one hand and missing/bad on the other, change the appropriate
’default*’ and ’bad*’ arguments to something like:

* None
* another constant value
* $NonNumericInputError/self.NonNumericInputError
* $ValueError/ValueError

(NonNumericInputError is defined in this class and is useful for
distinguishing between bad input vs a TypeError/ValueError
thrown for some other reason.)

Here’s an example using multiple values to schedule newspaper deliveries.
’checkboxes’ comes from a form with checkboxes for all the days of the week.
The days the user previously chose are preselected. The user checks/unchecks
boxes as desired and presses Submit. The value of ’checkboxes’ is a list of
checkboxes that were checked when Submit was pressed. Our task now is to
turn on the days the user checked, turn off the days he unchecked, and leave
on or off the days he didn’t change.

dic = self.webInput([], [’dayCheckboxes’])
wantedDays = dic[’dayCheckboxes’] # The days the user checked.
for day, on in self.getAllValues():

if not on and wantedDays.has_key(day):
self.TurnOn(day)
... Set a flag or insert a database record ...

elif on and not wantedDays.has_key(day):
self.TurnOff(day)
... Unset a flag or delete a database record ...

’source’ allows you to look up the variables from a number of different
sources:

’f’ fields (CGI GET/POST parameters)
’c’ cookies
’s’ session variables
’v’ "values", meaning fields or cookies

In many forms, you’re dealing only with strings, which is why the
’default’ argument is third and the numeric arguments are banished to
the end. But sometimes you want automatic number conversion, so that
you can do numeric comparisons in your templates without having to
write a bunch of conversion/exception handling code. Example:

#silent $webInput([’name’, ’height:int’])
$name is $height cm tall.
#if $height >= 300
Wow, you’re tall!
#else
Pshaw, you’re short.
#end if

dic = self.webInput([’name’, ’height:int’])
name = dic[name]
height = dic[height]
write("%s is %s cm tall." % (name, height))
if height > 300:

write("Wow, you’re tall!")
else:

write("Pshaw, you’re short.")

To convert a value to a number, suffix ":int" or ":float" to the name. The
method will search first for a "height:int" variable and then for a "height"
variable. (It will be called "height" in the final dictionary.) If a numeric
conversion fails, use or raise ’badInt’ or ’badFloat’. Missing values work
the same way as for strings, except the default is ’defaultInt’ or
’defaultFloat’ instead of ’default’.

If a name represents an uploaded file, the entire file will be read into
memory. For more sophisticated file-upload handling, leave that name out of
the list and do your own handling, or wait for Cheetah.Utils.UploadFileMixin.

This mixin class works only in a subclass that also inherits from
Webware’s Servlet or HTTPServlet. Otherwise you’ll get an AttributeError
on ’self.request’.

EXCEPTIONS: ValueError if ’source’ is not one of the stated characters.
TypeError if a conversion suffix is not ":int" or ":float".

74 14 Using Cheetah with Webware

14.8 More examples

Example A – a standalone servlet

Example B – a servlet under a site framework

Example C – several servlets with a common template

14.9 Other Tips

If your servlet accesses external files (e.g., via an#include directive), remember that the current directory
is not necessarily directory the servlet is in. It’s probably some other directory WebKit chose. To find a
file relative to the servlet’s directory, prefix the path with whateverself.serverSidePath() returns (from
Servlet.serverSidePath() .

If you don’t understand how#extends and#implements work, and about a template’s main method, read the
chapter on inheritance (sections 8.2 and 8.3). This may help you avoid buggy servlets.

14.8 More examples 75

15 non-Webware HTML output

Cheetah can be used with all types of HTML output, not just with Webware.

15.1 Static HTML Pages

Some sites like Linux Gazette (http://www.linuxgazette.com/) require completely static pages because they are mirrored
on servers running completely different software from the main site. Even dynamic sites may have one or two pages
that are static for whatever reason, and the site administrator may wish to generate those pages from Cheetah templates.

There’s nothing special here. Just create your templates as usual. Then compile and fill them whenever the template
definition changes, and fill them again whenever the placeholder values change. You may need an extra step to copy
the .html files to their final location. A Makefile (chapter 13.8) can help encapsulate these steps.

15.2 CGI scripts

Unlike Webware servlets, which don’t have to worry about the HTTP headers, CGI scripts must emit their own headers.
To make a template CGI aware, add this at the top:

#extends Cheetah.Tools.CGITemplate
#implements respond
$cgiHeaders#slurp

Or if your template is inheriting from a Python class:

#extends MyPythonClass
#implements respond
$cgiHeaders#slurp

A sample Python class:

from Cheetah.Tools import CGITemplate
class MyPythonClass(CGITemplate):

def cgiHeadersHook(self):
return "Content-Type: text/html; charset=koi8-r\n\n"

Compile the template as usual, put the .py template module in your cgi-bin directory and give it execute permission.
.cgiHeaders() is a “smart” method that outputs the headers if the module is called as a CGI script, or outputs
nothing if not. Being “called as a CGI script” means the environmental variableREQUESTMETHODexists and
self.isControlledByWebKit is false. If you don’t agree with that definition, override.isCgi() and provide
your own.

The default header is a simpleContent-type: text/html\n\n , which works with all CGI scripts. If you
want to customize the headers (e.g., to specify the character set), override.cgiHeadersHook() and return a string
containing all the headers. Don’t forget to include the extra newline at the end of the string: the HTTP protocol
requires this empty line to mark the end of the headers.

To read GET/POST variables from form input, use the.webInput() method (section 14.7), or extract them yourself
using Python’scgi module or your own function. Although.webInput() was originally written for Webware
servlets, it now handles CGI scripts too. There are a couple behavioral differences between CGI scripts and Webware

76 15 non-Webware HTML output

servlets regarding input variables:

1. CGI scripts, using Python’scgi module, believeREQUESTMETHODand recognizeeitherGET variablesor
POST variables, not both. Webware servlets, doing additional processing, ignoreREQUESTMETHODand
recognize both, like PHP does.

2. Webware servlets can ask for cookies or session variables instead of GET/POST variables, by passing the
argumentsrc=’c’ or src=’s’ . CGI scripts get aRuntimeError if they try to do this.

If you keep your .tmpl files in the same directory as your CGI scripts, make sure they don’t have execute permission.
Apache at least refuses to serve files in aScriptAlias directory that don’t have execute permission.

15.2 CGI scripts 77

16 Non-HTML Output

Cheetah can also output any other text format besides HTML.

16.1 Python source code

To be written. We’re in the middle of working on an autoindenter to make it easier to encode Python indentation in a
Cheetah template.

78 16 Non-HTML Output

17 Batteries included: templates and other libraries

Cheetah comes “batteries included” with libraries of templates, functions, classes and other objects you can use in
your own programs. The different types are listed alphabetically below, followed by a longer description of the
SkeletonPage framework. Some of the objects are classes for specific purposes (e.g., filters or error catchers), while
others are standalone and can be used without Cheetah.

If you develop any objects which are generally useful for Cheetah sites, please consider posting them on the wiki with
an announcement on the mailing list so we can incorporate them into the standard library. That way, all Cheetah users
will benefit, and it will encourage others to contribute their objects, which might include something you want.

17.1 ErrorCatchers

ModuleCheetah.ErrorCatchers contains error-handling classes suitable for the#errorCatcher directive.
These are debugging tools that are not intended for use in production systems. See section 10.2 for a description of
the error catchers bundled with Cheetah.

17.2 FileUtils

ModuleCheetah.FileUtils contains generic functions and classes for doing bulk search-and-replace on several
files, and for finding all the files in a directory hierarchy whose names match a glob pattern.

17.3 Filters

ModuleFilters contains filters suitable for the#Filter directive. See section 7.9 for a description of the filters
bundled with Cheetah.

17.4 SettingsManager

TheSettingsManager class in theCheetah.SettingsManager module is a baseclass that provides facilities
for managing application settings. It facilitates the use of user-supplied configuration files to fine tune an application.
A setting is a key/value pair that an application or component (e.g., a filter, or your own servlets) looks up and treats
as a configuration value to modify its (the component’s) behaviour.

SettingsManager is designed to:

• work well with nested settings dictionaries of any depth

• read/write.ini style config files (or strings)

• read settings from Python source files (or strings) so that complex Python objects can be stored in the applica-
tion’s settings dictionary. For example, you might want to store references to various classes that are used by
the application, and plugins to the application might want to substitute one class for another.

• allow sections in.ini config files to be extended by settings in Python src files. If a section contains
a setting like “importSettings=mySettings.py ”, SettingsManager will merge all the settings
defined in “mySettings.py ” with the settings for that section that are defined in the.ini config file .

• maintain the case of setting names, unlike the ConfigParser module

Cheetah usesSettingsManager to manage its configuration settings.SettingsManager might also be useful
in your own applications. See the source code and docstrings in the filesrc/SettingsManager.py for more
information.

79

17.5 Templates

PackageCheetah.Templates contains stock templates that you can either use as is, or extend by using the#def
directive to redefine specificblocks. Currently, the only template in here is SkeletonPage, which is described in detail
below in section 17.7. (Contributed by Tavis Rudd.)

17.6 Tools

PackageCheetah.Tools contains functions and classes contributed by third parties. Some are Cheetah-specific
but others are generic and can be used standalone. None of them are imported by any other Cheetah component; you
can delete the Tools/ directory and Cheetah will function fine.

Some of the items in Tools/ are experimental and have been placed there just to see how useful they will be, and
whether they attract enough users to make refining them worthwhile (the tools, not the users :).

Nothing in Tools/ is guaranteed to be: (A) tested, (B) reliable, (C) immune from being deleted in a future Cheetah
version, or (D) immune from backwards-incompatable changes. If you depend on something in Tools/ on a production
system, consider making a copy of it outside the Cheetah/ directory so that this version won’t be lost when you upgrade
Cheetah. Also, learn enough about Python and about the Tool so that you can maintain it and bugfix it if necessary.

If anything in Tools/ is found to be necessary to Cheetah’s operation (i.e., if another Cheetah component starts import-
ing it), it will be moved to theCheetah.Utils package.

Current Tools include:

Cheetah.Tools.MondoReport an ambitious class useful when iterating over records of data (#for loops), displaying
one pageful of records at a time (with previous/next links), and printing summary statistics about the records
or the current page. SeeMondoReportDoc.txt in the same directory as the module. Some features are
not implemented yet.MondoReportTest.py is a test suite (and it shows there are currently some errors in
MondoReport, hmm). Contributed by Mike Orr.

Cheetah.Tools.RecursiveNull Nothing, but in a friendly way. Good for filling in for objects you want to hide. If
$form.f1 is a RecursiveNull object, then$form.f1.anything["you"].might("use") will resolve
to the empty string. You can also put aRecursiveNull instance at the end of the searchList to convert
missing values to ” rather than raising aNotFound error or having a (less efficient) errorCatcher handle it. Of
course, maybe you prefer to get aNotFound error... Contributed by Ian Bicking.

Cheetah.Tools.SiteHierarchy Provides navigational links to this page’s parents and children. The constructor takes
a recursive list of (url,description) pairs representing a tree of hyperlinks to every page in the site (or section,
or application...), and also a string containing the current URL. Two methods ’menuList’ and ’crumbs’ return
output-ready HTML showing an indented menu (hierarchy tree) or crumbs list (Yahoo-style bar: home ¿ grand-
parent ¿ parent ¿ currentURL). Contributed by Ian Bicking.

17.7 Utils

PackageCheetah.Utils contains non-Cheetah-specific functions and classes that are imported by other Cheetah
components. Many of these utils can be used standalone in other applications too.

Current Utils include:

Cheetah.Utils.CGIImportMixin This is inherited byTemplate objects, and provides the method,.cgiImport
method (section??).

Cheetah.Utils.Misc A catch-all module for small functions.

80 17 Batteries included: templates and other libraries

UseOrRaise(thing, errmsg=’’) Raise ’thing’ if it’s a subclass of Exception, otherwise return it.
Useful when one argument does double duty as a default value or an exception to throw. Contribyted by
Mike Orr.

checkKeywords(dic, legalKeywords, what=’argument’ Verifies the dictionary does not con-
tain any keys not listed in ’legalKeywords’. If it does, raise TypeError. Useful for checking the keyword
arguments to a function. Contributed by Mike Orr.

Cheetah.Utils.UploadFileMixin Not implemented yet, but will contain the.uploadFile method (or three meth-
ods) to “safely” copy a form-uploaded file to a local file, to a searchList variable, or return it. When finished, this
will be inherited byTemplate , allowing all templates to do this. If you want this feature, read the docstring in
the source and let us know on the mailing list what you’d like this method to do. Contributed by Mike Orr.

Cheetah.Utils.VerifyType Functions to verify the type of a user-supplied function argument. Contributed by Mike
Orr.

Cheetah.Templates.SkeletonPage

A stock template class that may be useful for web developers is defined in the
Cheetah.Templates.SkeletonPage module. TheSkeletonPage template class is generated from
the following Cheetah source code:

17.7 Utils 81

##doc-module: A Skeleton HTML page template, that provides basic structure and utility methods.
##
#extends Cheetah.Templates._SkeletonPage
#implements respond
##
#cache id=’header’
$docType
$htmlTag
<!-- This document was autogenerated by Cheetah(http://CheetahTemplate.org).
Do not edit it directly!

Copyright $currentYr - $siteCopyrightName - All Rights Reserved.
Feel free to copy any javascript or html you like on this site,
provided you remove all links and/or references to $siteDomainName
However, please do not copy any content or images without permission.

$siteCredits

-->

#block writeHeadTag
<head>
<title>$title</title>
$metaTags
$stylesheetTags
$javascriptTags
</head>
#end block writeHeadTag

#end cache header
#################

$bodyTag

#block writeBody
This skeleton page has no flesh. Its body needs to be implemented.
#end block writeBody

</body>
</html>

You can redefine any of the blocks defined in this template by writing a new template that#extends Skeleton-
Page. (As you remember, using#extends makes your template implement the.writeBody() method instead
of .respond() – which happens to be the same method SkeletonPage expects the page content to be (note the
writeBody block in SkeletonPage).)

#def bodyContents
Here’s my new body. I’ve got some flesh on my bones now.
#end def bodyContents

All of the $placeholders used in theSkeletonPage template definition are attributes or methods of the
SkeletonPage class. You can reimplement them as you wish in your subclass. Please read the source code of
the filesrc/Templates/ SkeletonPage.py before doing so.

82 17 Batteries included: templates and other libraries

You’ll need to understand how to use the following methods of theSkeletonPage class: $metaTags() ,
$stylesheetTags() , $javascriptTags() , and$bodyTag() . They take the data you define in various
attributes and renders them into HTML tags.

• metaTags()– Returns a formatted vesion of the self.metaTags dictionary, using the formatMetaTags function
from SkeletonPage.py .

• stylesheetTags() – Returns a formatted version of theself. stylesheetLibs and
self. stylesheets dictionaries. The keys inself. stylesheets must be listed in the order
that they should appear in the listself. stylesheetsOrder , to ensure that the style rules are defined in
the correct order.

• javascriptTags() – Returns a formatted version of theself. javascriptTags and
self. javascriptLibs dictionaries. Each value inself. javascriptTags should be a ei-
ther a code string to include, or a list containing the JavaScript version number and the code string. The keys
can be anything. The same applies forself. javascriptLibs , but the string should be the SRC filename
rather than a code string.

• bodyTag()– Returns an HTML body tag from the entries in the dictself. bodyTagAttribs .

The class also provides some convenience methods that can be used as $placeholders in your template definitions:

• imgTag(self, src, alt=”, width=None, height=None, border=0)– Dynamically generate an image tag. Cheetah
will try to convert the “src ” argument to a WebKit serverSidePath relative to the servlet’s location. If width
and height aren’t specified they are calculated using PIL or ImageMagick if either of these tools are available. If
all your images are stored in a certain directory you can reimplement this method to append that directory’s path
to the “src ” argument. Doing so would also insulate your template definitions from changes in your directory
structure.

17.7 Utils 83

18 Visual Editors

This chapter is about maintaining Cheetah templates with visual editors, and the tradeoffs between making it friendly
to both text editors and visual editors.

Cheetah’s main developers do not use visual editors. Tavis usesemacs; Mike usesvim . So our first priority is to
make templates easy to maintain in text editors. In particular, we don’t want to add features like Zope Page Template’s
placeholder-value-with-mock-text-for-visual-editors-all-in-an-XML-tag. The syntax is so verbose it makes for a whole
lotta typing just to insert a simple placeholder, for the benefit of editors we never use. However, as users identify
features which would help their visual editing without making it harder to maintain templates in a text editor, we’re all
for it.

As it said in the introduction, Cheetah purposely does not use HTML/XML tags for $placeholders or #directives.
That way, when you preview the template in an editor that interprets HTML tags, you’ll still see the placeholder and
directive source definitions, which provides some “mock text” even if it’s not the size the final values will be, and
allows you to use your imagination to translate how the directive output will look visually in the final.

If your editor has syntax highlighting, turn it on. That makes a big difference in terms of making the template eas-
ier to edit. Since no “Cheetah mode” has been invented yet, set your highlighting to Perl mode, and at least the
directives/placeholders will show up in different colors, although the editor won’t reliably guess where the direc-
tive/placeholder ends and normal text begins.

84 18 Visual Editors

A Useful Web Links

See the wiki for more links. (The wiki is also updated more often than this chapter is.)

A.1 Cheetah Links

Home Page– http:www.CheetahTemplate.org/

On-line Documentation – http:www.CheetahTemplate.org/learn.html

SourceForge Project Page– http:sf.net/projects/cheetahtemplate/

Mailing List Subscription Page – http://lists.sourceforge.net/lists/listinfo/cheetahtemplate-discuss

Mailing List Archive @ Geocrawler – http://www.geocrawler.com/lists/3/SourceForge/12986/0/

Mailing List Archive @ Yahoo – http://groups.yahoo.com/group/cheetah-archive/

CVS Repository – http://sourceforge.net/cvs/?group id=28961

CVS-commits archive – http://www.geocrawler.com/lists/3/SourceForge/13091/0/

A.2 Third-party Cheetah Stuff

• Steve Howell has written a photo viewer using Python.http://mountainwebtools.com/PicViewer/install.htm

A.3 Webware Links

Home Page– http://webware.sf.net/

On-line Documentation – http://webware.sf.net/Webware/Docs/

SourceForge Project Page– http://sf.net/projects/webware/

Mailing List Subscription Page – http://lists.sourceforge.net/lists/listinfo/webware-discuss

A.4 Python Links

Home Page– http://www.python.org/

On-line Documentation – http://www.python.org/doc/

SourceForge Project Page– http://sf.net/projects/python/

The Vaults of Parnassus: Python Resources– http://www.vex.net/parnassus/

Python Cookbook – http://aspn.activestate.com/ASPN/Cookbook/Python

85

A.5 Other Useful Links

Python Database Modules and Open Source Databases

Python Database Topic Guide– http://python.org/topics/database/

PostgreSQL Database– http://www.postgresql.org/index.html

MySQL Database – http://www.mysql.com/

A comparison of PostgreSQL and MySQL – http://phpbuilder.com/columns/tim20001112.php3

Other Template Systems

Chuck’s “Templates” Summary Page – http://webware.sf.net/Papers/Templates/

Other Internet development frameworks

ZOPE (Z Object Publishing Environment) – http://zope.org/

Server Side Java– http://jakarta.apache.org/

PHP – http://php.net/

IBM Websphere – http://www.ibm.com/websphere/

Coldfusion and Spectra – http://www.macromedia.com/

86 A Useful Web Links

B Examples

The Cheetah distribution comes with an ’examples’ directory. Browse the files in this directory and its subdirectories
for examples of how Cheetah can be used.

B.1 Syntax examples

TheCheetah.Tests module contains a large number of test cases that can double as examples of how the Chee-
tah Language works. To view these cases go to the base directory of your Cheetah distribution and open the file
Cheetah/Tests/SyntaxAndOutput.py in a text editor.

B.2 Webware Examples

For examples of Cheetah in use with Webware visit the Cheetah and Webware wikis or use google. We used to have
more examples in the cheetah source tarball, but they were out of date and confused people.

87

C Cheetah vs. Other Template Engines

This appendix compares Cheetah with various other template/emdedded scripting languages and Internet development
frameworks. As Cheetah is similar to Velocity at a superficial level, you may also wish to read comparisons between
Velocity and other languages athttp://jakarta.apache.org/velocity/ymtd/ymtd.html.

C.1 Which features are unique to Cheetah

• Theblock framework (section 8.8)

• Cheetah’s powerful yet simplecaching framework (section 7.4)

• Cheetah’sUnified Dotted Notation andautocalling (sections 5.5 and 5.5)

• Cheetah’s searchList (section 5.6) information.

• Cheetah’s#raw directive (section 7.5)

• Cheetah’s#slurp directive (section 7.7)

• Cheetah’s tight integration with Webware for Python (section 14)

• Cheetah’sSkeletonPage framework(section 17.7)

• Cheetah’s ability to mix PSP-style code with Cheetah Language syntax (section 13.7) Because of Cheetah’s
design and Python’s flexibility it is relatively easy to extend Cheetah’s syntax with syntax elements from almost
any other template or embedded scripting language.

C.2 Cheetah vs. Velocity

For a basic introduction to Velocity, visithttp://jakarta.apache.org/velocity.

Velocity is a Java template engine. It’s older than Cheetah, has a larger user base, and has better examples and docs at
the moment. Cheetah, however, has a number of advantages over Velocity:

• Cheetah is written in Python. Thus, it’s easier to use and extend.

• Cheetah’s syntax is closer to Python’s syntax than Velocity’s is to Java’s.

• Cheetah has a powerful caching mechanism. Velocity has no equivalent.

• It’s far easier to add data/objects into the namespace where $placeholder values are extracted from in Cheetah.
Velocity calls this namespace a ’context’. Contexts are dictionaries/hashtables. You can put anything you want
into a context, BUT you have to use the .put() method to populate the context; e.g.,

VelocityContext context1 = new VelocityContext();
context1.put("name","Velocity");
context1.put("project", "Jakarta");
context1.put("duplicate", "I am in context1");

Cheetah takes a different approach. Rather than require you to manually populate the ’namespace’ like Velocity,
Cheetah will accept any existing Python object or dictionary AS the ’namespace’. Furthermore, Cheetah allows
you to specify a list namespaces that will be searched in sequence to find a varname-to-value mapping. This
searchList can be extended at run-time.

88 C Cheetah vs. Other Template Engines

If you add a ‘foo’ object to the searchList and the ‘foo’ has an attribute called ’bar’, you can simply type
$bar in the template. If the second item in the searchList is dictionary ’foofoo’ containing{’spam’:1234,
’parrot’:666} , Cheetah will first look in the ‘foo’ object for a ‘spam’ attribute. Not finding it, Cheetah
will then go to ‘foofoo’ (the second element in the searchList) and look among its dictionary keys for ‘spam’.
Finding it, Cheetah will selectfoofoo[’spam’] as$spam’s value.

• In Cheetah, the tokens that are used to signal the start of $placeholders and #directives are configurable. You
can set them to any character sequences, not just $ and #.

C.3 Cheetah vs. WebMacro

For a basic introduction to WebMacro, visithttp://webmacro.org.

The points discussed in section C.2 also apply to the comparison between Cheetah and WebMacro. For further differ-
ences please refer tohttp://jakarta.apache.org/velocity/differences.html.

C.4 Cheetah vs. Zope’s DTML

For a basic introduction to DTML, visithttp://www.zope.org/Members/michel/ZB/DTML.dtml.

• Cheetah is faster than DTML.

• Cheetah does not use HTML-style tags; DTML does. Thus, Cheetah tags are visible in rendered HTML output
if something goes wrong.

• DTML can only be used with ZOPE for web development; Cheetah can be used as a standalone tool for any
purpose.

• Cheetah’s documentation is more complete than DTML’s.

• Cheetah’s learning curve is shorter than DTML’s.

• DTML has no equivalent of Cheetah’s blocks, caching framework, unified dotted notation, and#raw directive.

Here are some examples of syntax differences between DTML and Cheetah:

<dtml-in frogQuery>

<dtml-var animal_name>
</dtml-in>

#for $animal_name in $frogQuery

$animal_name
#end for

C.3 Cheetah vs. WebMacro 89

<dtml-if expr="monkeys > monkey_limit">
<p>There are too many monkeys!</p>

<dtml-elif expr="monkeys < minimum_monkeys">
<p>There aren’t enough monkeys!</p>

<dtml-else>
<p>There are just enough monkeys.</p>

</dtml-if>

#if $monkeys > $monkey_limit
<p>There are too many monkeys!</p>

#else if $monkeys < $minimum_monkeys
<p>There aren’t enough monkeys!</p>

#else
<p>There are just enough monkeys.</p>

#end if

<table>
<dtml-in expr="objectValues(’File’)">

<dtml-if sequence-even>
<tr bgcolor="grey">

<dtml-else>
<tr>

</dtml-if>
<td>
<dtml-var title_or_id>
</td></tr>

</dtml-in>
</table>

<table>
#set $evenRow = 0
#for $file in $files(’File’)

#if $evenRow
<tr bgcolor="grey">
#set $evenRow = 0

#else
<tr>
#set $evenRow = 1

#end if
<td>
$file.title_or_id
</td></tr>

#end for
</table>

The last example changed the name of$objectValues to $files because that’s what a Cheetah developer would
write. The developer would be responsible for ensuring$files returned a list (or tuple) of objects (or dictionaries)
containing the attributes (or methods or dictionary keys) ‘absoluteurl’ and ‘title or id’. All these names (‘objectVal-
ues’, ‘absoluteurl’ and ‘title or id’) are standard parts of Zope, but in Cheetah the developer is in charge of writing
them and giving them a reasonable behaviour.

90 C Cheetah vs. Other Template Engines

Some of DTML’s features are being ported to Cheetah, such asCheetah.Tools.MondoReport , which is based
on the<dtml-in> tag. We are also planning an output filter as flexible as the<dtml-var> formatting options.
However, neither of these are complete yet.

C.5 Cheetah vs. Zope Page Templates

For a basic introduction to Zope Page Templates, please visithttp://www.zope.org/Documentation/Articles/ZPT2.

C.6 Cheetah vs. PHP’s Smarty templates

PHP (http://www.php.net/) is one of the few scripting languages expressly designed for web servlets. However, it’s also
a full-fledged programming language with libraries similar to Python’s and Perl’s. The syntax and functions are like
a cross between Perl and C plus some original ideas (e.g.; a single array type serves as both a list and a dictionary,
$arr[]="value"; appends to an array).

Smarty (http://smarty.php.net/) is an advanced template engine for PHP. (Note: this comparision is based on Smarty’s
on-line documentation. The author has not used Smarty. Please send corrections or ommissions to the Cheetah mailing
list.) Like Cheetah, Smarty:

• compiles to the target programming language (PHP).

• has configurable delimeters.

• passes if-blocks directly to PHP, so you can use any PHP expression in them.

• allows you to embed PHP code in a template.

• has a caching framework (although it works quite differently).

• can read the template definition from any arbitrary source.

Features Smarty has that Cheetah lacks:

• Preprocessors, postprocessors and output filters. You can emulate a preprocessor in Cheetah by running your
template definition through a filter program or function before Cheetah sees it. To emulate a postprocessor, run
a .py template module through a filter program/function. To emulate a Smarty output filter, run the template
output through a filter program/function. If you want to use “cheetah compile” or “cheetah fill” in a pipeline,
use- as the input file name and--stdout to send the result to standard output. Note that Cheetah uses the
term “output filter” differently than Smarty: Cheetah output filters (#filter) operate on placeholders, while
Smarty output filters operate on the entire template output. There has been a proposed#sed directive that
would operate on the entire output line by line, but it has not been implemented.

• Variable modifiers. In some cases, Python has equivalent string methods (.strip , .capitalize ,
.replace(SEARCH, REPL)), but in other cases you must wrap the result in a function call or write a
custom output filter (#filter).

• Certain web-specific functions, which can be emulated with third-party functions.

• The ability to “plug in” new directives in a modular way. Cheetah directives are tightly bound to the compiler.
However, third-partyfunctionscan be freely imported and called from placeholders, andmethodscan be mixed
in via #extends . Part of this is because Cheetah distinguishes between functions and directives, while Smarty
treats them all as “functions”. Cheetah’s design does not allow functions to have flow control effect outside the
function (e.g.,#if and#for , which operate on template body lines), so directives like these cannot be encoded
as functions.

C.5 Cheetah vs. Zope Page Templates 91

• Configuration variables read from an .ini-style file. TheCheetah.SettingsManager module can parse
such a file, but you’d have to invoke it manually. (See the docstrings in the module for details.) In Smarty,
this feature is used for multilingual applications. In Cheetah, the developers maintain that everybody has their
own preferred way to do this (such as using Python’sgettext module), and it’s not worth blessing one
particular strategy in Cheetah since it’s easy enough to integrate third-party code around the template, or to add
the resulting values to the searchList.

Features Cheetah has that Smarty lacks:

• Saving the compilation result in a Python (PHP) module for quick reading later.

• Caching individual placeholders or portions of a template. Smarty caches only the entire template output as a
unit.

Comparisions of various Smarty constructs:

92 C Cheetah vs. Other Template Engines

{assign var="name" value="Bob"} (#set has better syntax in the author’s opinion)
counter (looks like equivalent to #for)
eval (same as #include with variable)
fetch: insert file content into output (#include raw)
fetch: insert URL content into output (no euqivalent, user can write

function calling urllib, call as $fetchURL(’URL’))
fetch: read file into variable (no equivalent, user can write function

based on the ’open/file’ builtin, or on .getFileContents() in
Template.)

fetch: read URL content into variable (no equivalent, use above
function and call as: #set $var = $fetchURL(’URL’)

html_options: output an HTML option list (no equivalent, user can
write custom function. Maybe FunFormKit can help.)

html_select_date: output three dropdown controls to specify a date
(no equivalent, user can write custom function)

html_select_time: output four dropdown controls to specify a time
(no equvalent, user can write custom function)

math: eval calculation and output result (same as #echo)
math: eval calculation and assign to variable (same as #set)
popup_init: library for popup windows (no equivalent, user can write

custom method outputting Javascript)

Other commands:
capture (no equivalent, collects output into variable. A Python

program would create a StringIO instance, set sys.stdout to
it temporarily, print the output, set sys.stdout back, then use
.getvalue() to get the result.)

config_load (roughly analagous to #settings, which was removed
from Cheetah. Use Cheetah.SettingsManager manually or write
a custom function.)

include (same as #include, but can include into variable.
Variables are apparently shared between parent and child.)

include_php: include a PHP script (e.g., functions)
(use #extends or #import instead)

insert (same as #include not in a #cache region)
{ldelim}{rdelim} (escape literal $ and # with a backslash,

use #compiler-settings to change the delimeters)
literal (#raw)
php (‘‘<% %>’’ tags)
section (#for $i in $range(...))
foreach (#for)
strip (like the #sed tag which was never implemented. Strips

leading/trailing whitespace from lines, joins several lines
together.)

Variable modifiers:
capitalize ($STRING.capitalize())
count_characters ($len(STRING))
count_paragraphs/sentances/words (no equivalent, user can write function)
date_format (use ’time’ module or download Egenix’s mx.DateTime)
default ($getVar(’varName’, ’default value’))
escape: html encode ($cgi.escape(VALUE))
escape: url encode ($urllib.quote_plus(VALUE))
escape: hex encode (no equivalent? user can write function)
escape: hex entity encode (no equivalent? user can write function)
indent: indent all lines of a var’s output (may be part of future

#indent directive)
lower ($STRING.lower())
regex_replace (’re’ module)
replace ($STRING.replace(OLD, NEW, MAXSPLIT))
spacify (#echo "SEPARATOR".join(SEQUENCE))
string_format (#echo "%.2f" % FLOAT , etc.)
strip_tags (no equivalent, user can write function to strip HTML tags,

or customize the WebSafe filter)
truncate (no equivalent, user can write function)
upper ($STRING.upper())
wordwrap (’writer’ module, or a new module coming in Python 2.3)

C.6 Cheetah vs. PHP’s Smarty templates 93

Some of these modifiers could be added to the super output filter we want to write someday.

C.7 Cheetah vs. PHPLib’s Template class

PHPLib ((http://phplib.netuse.de/) is a collection of classes for various web objects (authentication, shopping cart,
sessions, etc), but what we’re interested in is theTemplate object. It’s much more primitive than Smarty, and was
based on an old Perl template class. In fact, one of the precursors to Cheetah was based on it too. Differences from
Cheetah:

• Templates consist of text with{placeholders} in braces.

• Instead of a searchList, there is one flat namespace. Every variable must be assigned via theset var method.
However, you can pass this method an array (dictionary) of several variables at once.

• You cannot embed lookups or calculations into the template. Every placeholder must be an exact variable name.

• There are no directives. You must do all display logic (if, for, etc) in the calling routine.

• There is, however, a “block” construct. A block is a portion of text between the comment markers<!--
BEGIN blockName --> ...<!-- END blockName> . Theset block method extracts this text into
a namespace variable and puts a placeholder referring to it in the template. This has a few parallels with
Cheetah’s#block directive but is overall quite different.

• To do the equivalent of#if , extract the block. Then if true, do nothing. If false, assign the empty string to the
namespace variable.

• To do the equivalent of#for , extract the block. Set any namespace variables needed inside the loop. To
parse one iteration, use theparse method to fill the block variable (a mini-template) into another namespace
variable, appending to it. Refresh the namespace variables needed inside the loop and parse again; repeat for
each iteration. You’ll end up with a mini-result that will be plugged into the main template’s placeholder.

• To read a template definition from a file, use theset file method. This places the file’s content in a names-
pace variable. To read a template definition from a string, assign it to a namespace variable.

• Thus, for complicated templates, you are doing a lot of recursive block filling and file reading and parsing mini-
templates all into one flat namespace as you finally build up values for the main template. In Cheetah, all this
display logic can be embedded into the template using directives, calling out to Python methods for the more
complicated tasks.

• Although you can nest blocks in the template, it becomes tedious and arguably hard to read, because all blocks
have identical syntax. Unless you choose your block names carefully and put comments around them, it’s hard
to tell which blocks are if-blocks and which are for-blocks, or what their nesting order is.

• PHPLib templates do not have caching, output filters, etc.

C.8 Cheetah vs. PSP, PHP, ASP, JSP, Embperl, etc.

Webware’s PSP Component– http://webware.sourceforge.net/Webware/PSP/Docs/

Tomcat JSP Information – http://jakarta.apache.org/tomcat/index.html

ASP Information at ASP101 – http://www.asp101.com/

Embperl – http://perl.apache.org/embperl/

94 C Cheetah vs. Other Template Engines

Here’s a basic Cheetah example:

<TABLE>
#for $client in $service.clients
<TR>
<TD>$client.surname, $client.firstname</TD>
<TD>$client.email</TD>
</TR>
#end for
</TABLE>

Compare this with PSP:

<TABLE>
<% for client in service.clients(): %>
<TR>
<TD><%=client.surname()%>, <%=client.firstname()%></TD>
<TD><A HREF="mailto:<%=client.email()%>"><%=client.email()%></TD>
</TR>
<%end%>
</TABLE>

C.8 Cheetah vs. PSP, PHP, ASP, JSP, Embperl, etc. 95

D Optik license

The optik package (Cheetah.Utils.optik) is based on Optik 1.3,http://optik.sourceforge.net/, c©2001 Gregory P Ward
<gward@python.net>. It’s unmodified from the original version except theimport statements, which have been
adjusted to make them work in this location. The following license applies to optik:

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the author nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

96 D Optik license

	1 Introduction
	1.1 Who should read this Guide?
	1.2 What is Cheetah?
	1.3 What is the philosophy behind Cheetah?
	Why Cheetah doesn't use HTML-style tags

	1.4 Give me an example!
	1.5 Give me an example of a Webware servlet!
	1.6 How mature is Cheetah?
	1.7 Where can I get news?
	1.8 How can I contribute?
	Bug reports and patches
	Example sites and tutorials
	Template libraries and function libraries
	Test cases
	Publicity

	1.9 Acknowledgements
	1.10 License

	2 Vocabulary
	3 Getting Started
	3.1 Requirements
	3.2 Installation
	3.3 Files
	3.4 Uninstalling
	3.5 The 'cheetah' command
	3.6 Testing your installation
	3.7 Quickstart tutorial

	4 How Cheetah Works
	4.1 Constructing Template Objects
	4.2 ``cheetah compile'' and .py template modules
	4.3 ``cheetah fill''
	4.4 Some trivia about .py template modules
	4.5 Running a .py template module as a standalone program
	4.6 Object-Oriented Documents

	5 Language Overview
	5.1 Language Constructs -- Summary
	5.2 Placeholder Syntax Rules
	5.3 Where can you use placeholders?
	5.4 Are all those dollar signs really necessary?
	5.5 NameMapper Syntax
	Example
	Dictionary Access
	Autocalling

	5.6 Namespace cascading and the searchList
	5.7 Missing Values
	5.8 Directive Syntax Rules
	Directive closures and whitespace handling

	6 Comments
	6.1 Docstring Comments
	6.2 Header Comments

	7 Generating, Caching and Filtering Output
	7.1 Output from complex expressions: #echo
	7.2 Executing expressions without output: #silent
	7.3 One-line #if
	7.4 Caching Output
	Caching individual placeholders
	Caching entire regions

	7.5 #raw
	7.6 #include
	7.7 #slurp
	7.8 #indent
	7.9 Ouput Filtering and #filter

	8 Import, Inheritance, Declaration and Assignment
	8.1 #import and #from directives
	8.2 #extends
	8.3 #implements
	8.4 #set
	8.5 #del
	8.6 #attr
	8.7 #def
	8.8 #block ... #end block

	9 Flow Control
	9.1 #for ... #end for
	9.2 #repeat ... #end repeat
	9.3 #while ... #end while
	9.4 #if ... #else if ... #else ... #end if
	9.5 #unless ... #end unless
	9.6 #break and #continue
	9.7 #pass
	9.8 #stop
	9.9 #return

	10 Error Handling
	10.1 #try ... #except ... #end try, #finally, and #assert
	10.2 #errorCatcher and ErrorCatcher objects

	11 Instructions to the Parser/Compiler
	11.1 #breakpoint
	11.2 #compiler-settings

	12 Fine Control over Cheetah-generated Python modules
	12.1 Setting the source code encoding: #encoding
	12.2 Setting the sh-bang: #shBang

	13 Tips, Tricks and Troubleshooting
	13.1 Placeholder Tips
	13.2 Diagnostic Output
	13.3 When to use Python methods
	13.4 Calling superclass methods, and why you have to
	13.5 All methods
	13.6 Optimizing templates
	13.7 PSP-style tags
	13.8 Makefiles
	13.9 Using Cheetah in a Multi-Threaded Application
	13.10 Using Cheetah with gettext

	14 Using Cheetah with Webware
	14.1 Installing Cheetah on a Webware system
	14.2 Containment vs Inheritance
	The Containment Approach
	The Inheritance Approach

	14.3 Site frameworks
	14.4 Directory structure
	14.5 Initializing your template-servlet with Python code
	14.6 Form processing
	14.7 Form input, cookies, session variables and web server variables
	.webInput()

	14.8 More examples
	14.9 Other Tips

	15 non-Webware HTML output
	15.1 Static HTML Pages
	15.2 CGI scripts

	16 Non-HTML Output
	16.1 Python source code

	17 Batteries included: templates and other libraries
	17.1 ErrorCatchers
	17.2 FileUtils
	17.3 Filters
	17.4 SettingsManager
	17.5 Templates
	17.6 Tools
	17.7 Utils
	Cheetah.Templates.SkeletonPage

	18 Visual Editors
	A Useful Web Links
	A.1 Cheetah Links
	A.2 Third-party Cheetah Stuff
	A.3 Webware Links
	A.4 Python Links
	A.5 Other Useful Links
	Python Database Modules and Open Source Databases
	Other Template Systems
	Other Internet development frameworks

	B Examples
	B.1 Syntax examples
	B.2 Webware Examples

	C Cheetah vs. Other Template Engines
	C.1 Which features are unique to Cheetah
	C.2 Cheetah vs. Velocity
	C.3 Cheetah vs. WebMacro
	C.4 Cheetah vs. Zope's DTML
	C.5 Cheetah vs. Zope Page Templates
	C.6 Cheetah vs. PHP's Smarty templates
	C.7 Cheetah vs. PHPLib's Template class
	C.8 Cheetah vs. PSP, PHP, ASP, JSP, Embperl, etc.

	D Optik license

