
Multi-state models as a data exploration tool

Terry Therneau

March 29, 2019

1 Multi-state curves

Consider the simple survfit call

> curves <- survfit(Surv(time, status) ~ group, data=mydata)

In the classic case status is either a logical or 0/1 numeric variable that represents censoring (0
or false) or an event (1 or true), and the result is a survival curve for each group. If status is a
factor, however, the result is a multi-state estimate. In this case the first level of status is used
to code censoring while the remaining ones are possible states. Here is a simple competing risks
example where the three endpoints are labeled as a, b and c.

> set.seed(1952)

> crdata <- data.frame(time=1:11,

endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0),

labels=c("censor", "a", "b", "c")))

> tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata)

> dim(tfit)

[1] 1 4

> summary(tfit)

Call: survfit(formula = Surv(time, endpoint) ~ 1, data = crdata)

time n.risk n.event P(a) P(b) P(c) P()

1 11 1 0.0909 0.0000 0.000 0.909

2 10 1 0.1818 0.0000 0.000 0.818

3 9 1 0.1818 0.0909 0.000 0.727

5 7 1 0.2857 0.0909 0.000 0.623

6 6 1 0.3896 0.0909 0.000 0.519

7 5 1 0.3896 0.0909 0.104 0.416

9 3 1 0.3896 0.2294 0.104 0.277

10 2 1 0.3896 0.2294 0.242 0.139

The resulting object tfit contains an estimate of P (state), the probability of being in each state.
P is a matrix with one row for each time and one column for each of the four states a–c and the
”no event as of yet” state; we will often refer to the latter as the entry state. By definition each

1

row of P sums to 1. The plot of the fit will have 3 curves, by default the curve for an unnamed
state is not displayed. (Since they sum to 1 one of the 4 curves is redundant, and the entry state
is normally the least interesting of the set.)

> plot(tfit, col=1:3, lwd=2, ylab="Probability in state")

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y

in
 s

ta
te

The resulting survfms object appears as a matrix and can be subscripted as such, with a
column for each state and rows for each group that was created by any variables on the right
hand side of the formula. This makes it simple to display a subset of the curves using plot
or lines commands. The unnamed state in the above fit, for instance, can be displayed with
plot(tfit[,4]).

The curves are computed using the Aalen-Johansen estimator. The Kaplan-Meier estimate
and the cumulative incidence estimate (for competing risks) are each a special case of the AJ
estimate. The AJ is more general, however; a given subject can have multiple transitions from
state to state, including transitions to a state that was visited earlier. In this case the dataset
structure is similar to that for time varying covariates in a Cox model: the time variable will be
intervals (t1, t2] which are open on the left and closed on the right, the status variable contains
the state that was entered at time t2, and a subject will have multiple lines of data. There are
a few restrictions.

� An identifier variable is required which indicates which rows of the data frame belong to
each subject. If the id argument is missing the code assumes that each row of data is a
separate subject, which leads to a nonsense estimate when there are actually multiple rows
for each.

2

� Subjects do not have to enter at time 0 or all at the same time, but each must traverse a
connected segment of time. Disjoint intervals such as the pair (0, 5], (8, 10] are illegal.

� A subject cannot change groups. Any covariates on the right hand side of the formula
must remain constant within subject. (This function is not a way to creat supposed ‘time-
dependent’ survival curves.)

� Subjects may have case weights, and these weights may change over time for a subject.

By default every subject is assumed to start in an unnamed common entry state. The istate
argument can instead be used to designate an entry state for each subject; like variables in the
formula it is searched for in the data argument. The distribution of states at the first event time
is treated as the initial distribution of states; in common with ordinary survival any observation
which is censored before the first event time has no impact on the results.

The extended example below is intended to give more information about the routines.

2 Data set

The myeloid data set contains simulated data which mimics that from a trial in subjects with
acute myeloid leukemia. In this comparison of two conditioning regimens the canonical path
for a subject is initial therapy → complete response (CR) → hematologic stem cell transplant
(HSCT) → sustained remission, followed by relapse or death.

> myeloid[1:5,]

id trt futime death txtime crtime rltime

1 1 B 235 1 NA 44 113

2 2 A 286 1 200 NA NA

3 3 A 1983 0 NA 38 NA

4 4 B 2137 0 245 25 NA

5 5 B 326 1 112 56 200

The first few rows of data are shown above. The data set contains the follow-up time and status
at last follow-up for each subject, along with the time to transplant (txtime), complete response
(crtime) or relapse after CR (rltime). Subject 1 did not receive a transplant, as shown by the
NA value, and subject 2 did not achieve CR.

Overall survival curves for the data are shown in figure 1. The difference between the treat-
ment arms A and B is substantial. A goal of this analysis is to better understand this difference.
Here is the code to generate the simple survival curves:

> sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid)

> plot(sfit0, xscale=365.25, xaxs='r', col=1:2, lwd=2,

xlab="Years post enrollment", ylab="Survival")

> legend(20, .4, c("Arm A", "Arm B"),

col=1:2, lwd=2, bty='n')

3

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years post enrollment

S
ur

vi
va

l

Arm A
Arm B

Figure 1: Overall survival curves for the two treatments.

4

3 Competing risks

A first step towards deeper analysis is to look at intermediate states one at a time, e.g., how many
subjects ever achieve a CR or ever receive a transplant. Create a working data set that contains
variables for simple 2-state competing risks for the pairs CR/death and transplant/death. For
competing risks each subject has a single row of data, so this data set simply adds two new
variables and redefines two others. At the same time we will convert from days to months. This
is the natural time scale for our plots, and forestalls adding the xscale argument to every plot
call.

> data1 <- myeloid

> data1$crstat <- factor(with(data1, ifelse(is.na(crtime), death, 2)),

labels=c("censor", "death", "CR"))

> data1$crtime <- with(data1, ifelse(crstat=="CR", crtime, futime))

> data1$txstat <- factor(with(data1, ifelse(is.na(txtime), death, 2)),

labels=c("censor", "death", "transplant"))

> data1$txtime <- with(data1, ifelse(txstat=="transplant", txtime, futime))

> for (i in c("futime", "crtime", "txtime", "rltime"))

data1[[i]] <- data1[[i]] * 12/365.25 #rescale to months

This data set is the basis for our first set of curves, which are shown in figure 2. The plot
overlays three separate survfit calls: standard survival until death, complete response with
death as a competing risk, and transplant with death as a competing risk. For each fit we have
shown one selected state: the fraction who have died, fraction ever in CR, and fraction ever
to receive transplant, respectively. Most of the CR events happen before 2 months (the green
vertical line) and nearly all the additional CRs conferred by treatment B occur between months
2 and 8. Most transplants happen after 2 months, which is consistent with the clinical guide of
transplant after CR. The survival advantage for treatment B begins between 4 and 5 months,
which argues that it could be at least partially a consequence of the additional CR events.

The code to draw figure 2 is below. It can be separated into 5 parts:

1. Fits for the 3 endpoints are simple and found in the first 3 lines. The crstat and txstat

variables are factors, which causes a multi-state curve to be generated.

2. The layout and par commands are used to create a multi-part plot with curves on the left
and state space diagrams on the right, and to reduce the amount of white space between
them.

3. Draw a subset of the curves via subscripting. A multi-state survfit object appears as a
matrix of curves, with one row for each group (treatment) and one column for each state.
The CR state is the second column in sfit2, for instance. The CR fit was drawn first
simply because it has the greatest y-axis range, then the other curves added using the lines
command.

4. Decoration of the plots. This includes the line types, colors, legend, choice of x-axis labels,
etc.

5. Add the state space diagrams. The functions for this are described in the last section of
the vignette.

5

0.
4

0.
6

0.
8

1.
0

Months post enrollment

E
ve

nt
s

0 6 12 24 36 48

A death
B death

A transplant
B transplant

A CR
B CR

Entry

Death

CR

Entry

Death

Tx

Entry Death

Figure 2: Overall survival curves: time to death, to transplant (Tx), and to complete response
(CR). Each shows the estimated fraction of subjects who have ever reached the given state. The
vertical line at 2 months is for reference. The curves were limited to the first 48 months to more
clearly show early events. The right hand panel shows the state-space model for each pair of
curves.

6

> sfit1 <- survfit(Surv(futime, death) ~ trt, data1) #survival

> sfit2 <- survfit(Surv(crtime, crstat) ~ trt, data1) # CR

> sfit3 <- survfit(Surv(txtime, txstat) ~ trt, data1)

> layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))

> plot(sfit2[,2], mark.time=FALSE, fun='event', xmax=48,

lty=3, lwd=2, col=1:2, xaxt='n',

xlab="Months post enrollment", ylab="Events")

> lines(sfit1, mark.time=FALSE, xmax=48, fun='event', col=1:2, lwd=2)

> lines(sfit3[,2], mark.time=FALSE, xmax=48, fun='event', col=1:2,

lty=2, lwd=2)

> xtime <- c(0, 6, 12, 24, 36, 48)

> axis(1, xtime, xtime) #marks every year rather than 10 months

> temp <- outer(c("A", "B"), c("death", "transplant", "CR"), paste)

> temp[7] <- ""

> legend(25, .3, temp[c(1,2,7,3,4,7,5,6,7)], lty=c(1,1,1, 2,2,2 ,3,3,3),

col=c(1,2,0), bty='n', lwd=2)

> abline(v=2, lty=2, col=3)

> # add the state space diagrams

> par(mar=c(4,.1,1,1))

> crisk(c("Entry","Death", "CR"), alty=3)

> crisk(c("Entry","Death", "Tx"), alty=2)

> crisk(c("Entry","Death"))

> par(oldpar)

The association between a particular curve and its corresponding state space diagram is
critical. As we will see below, many different models are possible and it is easy to get confused.
Attachment of a diagram directly to each curve, as was done above, will not necessarily be day-
to-day practice, but the state space should always be foremost. If nothing else, draw it on a
scrap of paper and tape it to the side of the terminal when creating a data set and plots.

Figure 3 shows the transplant curves overlaid with the naive KM that censors subjects at
death. There is no difference in the initial portion as no deaths have yet intervened, but the final
portion overstates the transplant outcome by more than 10%.

1. The key problem with the naive estimate is that subjects who die can never have a trans-
plant. The result of censoring them is an estimate of the “fraction who would be trans-
planted, if death before transplant were abolished”. This is not a real world quantity.

2. In order to estimate this fictional quantity one needs to assume that death is uninforma-
tive with respect to future disease progression. The early deaths in months 0–2, before
transplant begins, are however a very different class of patient. Non-informative censoring
is untenable.

We are left with an unreliable estimate of an uninteresting quantity. Mislabeling any true state
as censoring is always a mistake, one that will not be repeated here. Here is the code for figure 3.
The use of a logical (true/false) as the status variable in the Surv call leads to ordinary survival
calculations.

7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months from enrollment

P
(s

ta
te

)

0 6 12 24 36 48

Arm A
Arm B

Entry transplant

Entry

transplant

Death

Figure 3: Correct (solid) and invalid (dashed) estimates of the number of subjects transplanted.

8

> badfit <- survfit(Surv(txtime, txstat=="transplant") ~ trt, data1)

> layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))

> plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2,

xlab="Months from enrollment", ylab="P(state)")

> axis(1, xtime, xtime)

> lines(sfit3[,2], fun='event', xmax=48, col=1:2, lwd=2)

> legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2,

col=1:2, bty='n', cex=1.2)

> par(mar=c(4,.1,1,1))

> crisk(c("Entry", "transplant"), alty=2, cex=1.2)

> crisk(c("Entry","transplant", "Death"), cex=1.2)

> par(oldpar)

4 Multi-state models

The multi-state models are based on a second data set which looks very much like the (start,
stop] data sets that are used for time dependent covariates. Consider subject 5 who experienced
CR on day 56, relapse on day 112 and death on day 200. In the expanded data set this subject
will have 3 lines, one for each of the intervals (0,56], (56, 112] and (112, 200]. The first interval
ends with CR and the second with relapse.

What if someone has two endpoints on the same day? Creation of a zero length interval will
lead to a justifiable complaint from the programs; subjects are not allowed to do instantaneous
transitions. For each such observation a decision needs to be made, preferably based on rational
scientific argument rather than statistical or programming convenience. It turns out that we do
have one such case in the myeloid data: one subject who was declared to be a CR on the day
of their transplant. Since complete response will occur before its clinical detection I decided to
make the tied CR one day earlier. This issue didn’t come up in creating data1 only because it
dealt with the pairs CR:death and transplant:death, and neither of these has a tie.

We create the data set using the tmerge function in R, code is shown below. (Because such
start-stop data sets are commonly used for Cox models with time-dependent covariates, this is
a familiar task to many users and they will have developed their own favorite work flow; tmerge
is a useful but not essential tool.) The tmerge function uses a baseline data set, in this case the
variables from the starting data that are constant over time, and then adds rows to it. Each
event and tdc statement sequentially adds either an endpoint or time-dependent covariate as
new rows to the data, in much the same way that one would insert new folders into the proper
position in a file drawer. Each addition will split a subject’s time interval as necessary.

> temp <- myeloid

> id <- which(temp$crtime == temp$txtime) # the one special person

> temp$crtime[id] <- temp$crtime[id] -1 # move their CR back by 1 day

> data2 <- tmerge(myeloid[, c('id', 'trt')], temp,

id=id, death=event(futime, death),

transplant = event(txtime),

response = event(crtime),

9

relapse = event(rltime),

priortx = tdc(txtime),

priorcr = tdc(crtime))

> attr(data2, "tcount")

early late gap within boundary leading trailing

death 0 0 0 0 0 0 646

transplant 0 0 0 363 0 0 1

response 0 0 0 454 0 0 0

relapse 0 0 0 226 0 0 0

priortx 0 0 0 0 363 0 1

priorcr 0 0 0 0 454 0 0

tied

death 0

transplant 0

response 0

relapse 0

priortx 0

priorcr 0

> data2$event <- with(data2, factor(death + 2*response + 3*transplant +

4*relapse, 0:4,

labels=c("censor", "death", "CR",

"transplant", "relapse")))

> data2[1:10,c(1:4, 11, 9, 10)]

id trt tstart tstop event priortx priorcr

1 1 B 0 44 CR 0 0

2 1 B 44 113 relapse 0 1

3 1 B 113 235 death 0 1

4 2 A 0 200 transplant 0 0

5 2 A 200 286 death 1 0

6 3 A 0 38 CR 0 0

7 3 A 38 1983 censor 0 1

8 4 B 0 25 CR 0 0

9 4 B 25 245 transplant 0 1

10 4 B 245 2137 censor 1 1

The tmerge call starts by adding death/censoring time, which appears in the ‘trailing’ column
of the tcount table since it defines the right endpoint for each subject, and thus by definition
occurs at the trailing end of their interval. Then transplant is added which has 363 within and
1 trailing: there is one subject whose transplant date is also their last follow-up date. Response
and relapse times all fall within a prior interval. Looking above at the first 4 subjects in data2,
the fourth follows the canonical path of CR followed by transplant. Subject 1 relapses after CR,
without transplant, and subject 2 has transplant without a CR. A critical step in any multi-state
model is to print out some portion of the created data set and read it. This data set is key, and
any errors will invalidate all the analysis which follows. This step has been abbreviated for the
vignette; inspection of only the first 4 subjects is a very small sample.

Rescale the data set from days to months and look at three more summaries.

10

> for (i in c("tstart", "tstop"))

data2[[i]] <- data2[[i]] *12/365.25 #scale to months

> ctab <- table(table(data2$id))

> ctab

1 2 3 4

84 216 211 135

> with(data2, table(table(id, event)))

0 1

1541 1689

> etab <- table(data2$event, useNA="ifany")

> etab

censor death CR transplant relapse

325 320 454 364 226

In the final result there are 84 subjects with only a single row of data, 216 with 2 rows, etc. The
table of id by event contains only 0 and 1 as values, i.e., no one has two events of the same
type, which is correct for this data set. Overall 454 of the 646 subjects experience a CR at some
point in the study.

Complete response is a goal of the initial therapy; figure 4 looks more closely at this. As was
noted before arm B has an increased number of late responses. The duration of response is also
increased: the solid curves show the number of subjects still in response, and we see that they
spread farther apart than the dotted “ever in response” curves. The figure shows only the first
eight months in order to better visualize the details, but continuing the curves out to 48 months
reveals a similar pattern. Here is the code to create the figure.

> crstat <- data2$event

> crstat[crstat=="transplant"] <- "censor" # ignore transplants

> crsurv <- survfit(Surv(tstart, tstop, crstat) ~ trt,

data= data2, id=id, influence=TRUE)

> layout(matrix(c(1,1,2,3), 2,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))

> plot(sfit2[,2], lty=3, lwd=2, col=1:2, xmax=12,

xlab="Months", ylab="CR")

> lines(crsurv[,2], lty=1, lwd=2, col=1:2, xmax=12)

> par(mar=c(4, .1, 1, 1))

> crisk(c("Entry","CR", "Death"), alty=3)

> state3(c("Entry", "CR", "Death/Relapse"))

> par(oldpar)

Rather than create a new data set, the above code modifies the event variable so as to ignore
transitions to the transplant state. They become a non-event, in the same way that extra lines
with a status of zero are used to create time-dependent covariates for a Cox model fit.

The survfit call above included the influence=TRUE argument, which causes the influence
array to be calculated and returned. It contains, for each subject, that subject’s influence on the
time by state matrix of results and allows for calculation of the standard error of the restricted
mean. We will return to this in a later section.

11

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

Months

C
R

Entry

CR

Death

Entry

CR

Death/Relapse

Figure 4: Models for ‘ever in CR’ and ‘currently in CR’; the only difference is an additional
transition. Both models ignore transplant.

12

> print(crsurv, rmean=48, digits=2)

Call: survfit(formula = Surv(tstart, tstop, crstat) ~ trt, data = data2,

id = id, influence = TRUE)

n nevent rmean std(rmean)*

trt=A, death 632 171 20.2 1.10

trt=B, death 694 149 15.6 1.01

trt=A, CR 632 206 16.3 1.13

trt=B, CR 694 248 21.2 1.12

trt=A, transplant 632 0 0.0 0.00

trt=B, transplant 694 0 0.0 0.00

trt=A, relapse 632 109 4.3 0.56

trt=B, relapse 694 117 5.5 0.61

trt=A, 632 0 7.1 0.78

trt=B, 694 0 5.6 0.65

*mean time in state, restricted (max time = 48)

The restricted mean time in the CR state is extended by 21.2 - 16.3 = 4.89 months. A
question which immediately gets asked is whether this difference is “significant”, to which there
are two answers. The first and more important is to ask whether 5 months is an important gain
from either a clinical or patient perspective. The overall restricted mean survival for the study is
approximately 30 of the first 48 months post entry (use print(sfit1, rmean=48)); on this backdrop
an extra 5 months in CR might or might not be an meaningful advantage from a patient’s point
of view. The less important answer is to test whether the apparent gain is sufficiently rare from a
mathematical point of view, i.e., “statistical” significance. The standard errors of the two values
are 1.1 and 1.1, and since they are based on disjoint subjects the values are independent, leading
to a standard error for the difference of

√
1.12 + 1.22 = 1.6. The difference is over 3 standard

errors.
In summary

� Arm B adds late complete responses (about 4%); there are 212/310 in arm B vs. 244/338
in arm B.

� The difference in 4 year survival is about 6%.

� There is approximately 2 months longer average duration of CR (of 48).

CR → transplant is the target treatment path for a patient; given the improvements listed
above why does figure 2 show no change in the number transplanted? Figure 5 shows the
transplants broken down by whether this happened before or after complete response. Most
of the non-CR transplants happen by 10 months. One possible explanation is that once it is
apparent to the patient/physician pair that CR is not going to occur, they proceed forward with
other treatment options. The extra CR events on arm B, which occur between 2 and 8 months,
lead to a consequent increase in transplant as well, but at a later time of 12–24 months: for a
subject in CR we can perhaps afford to defer the transplant date.

Computation is again based on a manipulation of the event variable: in this case dividing the
transplant state into two sub-states based on the presence of a prior CR. The code makes use

13

0.
0

0.
1

0.
2

0.
3

0.
4

Months

Tr
an

sp
la

nt
ed

0 6 12 24 36 48

A, transplant without CR
B, transplant without CR
A, transplant after CR
B, transplant after CR

Entry

CRTransplant

Transplant

Figure 5: Transplant status of the subjects, broken down by whether it occurred before or after
CR.

14

of the time-dependent covariate priorcr. (Because of scheduling constraints within a hospital
it is unlikely that a CR that is within a few days prior to transplant could have effected the
decision to schedule a transplant, however. An alternate breakdown that might be useful would
be “transplant without CR or within 7 days after CR” versus those that are more than a week
later. There are many sensible questions that can be asked.)

> event2 <- with(data2, ifelse(event=="transplant" & priorcr==1, 6,

as.numeric(event)))

> event2 <- factor(event2, 1:6, c(levels(data2$event), "tx after CR"))

> txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, data2, id=id,

subset=(priortx ==0))

> layout(matrix(c(1,1,1,2,2,0),3,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1,.1))

> plot(txsurv[,c(3,5)], col=1:2, lty=c(1,1,2,2), lwd=2, xmax=48,

xaxt='n', xlab="Months", ylab="Transplanted")

> axis(1, xtime, xtime)

> legend(15, .13, c("A, transplant without CR", "B, transplant without CR",

"A, transplant after CR", "B, transplant after CR"),

col=1:2, lty=c(1,1,2,2), lwd=2, bty='n')

> state4() # add the state figure

> par(oldpar)

Figure 6 shows the full set of state occupancy probabilities for the cohort over the first 4
years. At each point in time the curves estimate the fraction of subjects currently in that state.
The total who are in the transplant state peaks at about 9 months and then decreases as subjects
relapse or die; the curve rises whenever someone receives a transplant and goes down whenever
someone leaves the state. At 36 months treatment arm B (dashed) has a lower fraction who
have died, the survivors are about evenly split between those who have received a transplant and
those whose last state is a complete response (only a few of the latter are post transplant). The
fraction currently in relapse – a transient state – is about 5% for each arm. The figure omits
the curve for “still in the entry state”. The reason is that at any point in time the sum of the
5 possible states is 1 — everyone has to be somewhere. Thus one of the curves is redundant,
and the fraction still in the entry state is the least interesting of them. (A multi-state survfit

call that does not include the istate argument will assume that everyone starts in an unnamed
entry state. The default plot behavior is to omit the curves for any unnamed states.)

> sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, data2, id=id)

> sfit4$transitions

to

from death CR transplant relapse

death 0 0 0 0

CR 17 0 159 168

transplant 149 11 0 45

relapse 99 0 99 0

55 443 106 13

> layout(matrix(1:2,1,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1,.1))

15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

C
ur

re
nt

 s
ta

te

0 6 12 24 36 48

Death

CR

Transplant

Recurrence

Entry

CR Tx Rel

Death

Figure 6: The full multi-state curves for the two treatment arms.

16

> plot(sfit4, col=rep(1:4,each=2), lwd=2, lty=1:2, xmax=48, xaxt='n',

xlab="Months", ylab="Current state")

> axis(1, xtime, xtime)

> text(c(40, 40, 40, 40), c(.51, .13, .32, .01),

c("Death", "CR", "Transplant", "Recurrence"), col=1:4)

> par(mar=c(5.1, .1, 1, .1))

> state5()

> par(oldpar)

The transitions table above shows 55 direct transitions from entry to death, i.e., subjects who
die without experiencing any of the other intermediate points, 159 who go from CR to transplant
(as expected), 11 who go from transplant to CR, etc. No one was observed to go from relapse to
CR in the data set, this serves as a data check since it should not be possible per the data entry
plan.

5 Influence matrix

For one of the curves above we returned the influence array. For each value in the matrix P =
probability in state and each subject i in the data set, this contains the effect of that subject on
each value in P . Formally,

Iij(t) =
∂pj(t)

∂wi

∣∣∣∣
w

where Iij(t) is the influence of subject i on pj(t), and pj(t) is the estimated probability for state
j at time t. This is known as the infinitesimal jackknife (among other labels).

> crsurv <- survfit(Surv(tstart, tstop, crstat) ~ trt,

data= data2, id=id, influence=TRUE)

> curveA <- crsurv[1,] # select treatment A

> dim(curveA$pstate) # P matrix for treatement A

[1] 400 5

> dim(curveA$influence) # influence matrix for treatment A

[1] 317 401 5

> table(data1$trt)

A B

317 329

> curveA$p0 # state distribution at time 0

death CR transplant relapse

0 0 0 0 1

For treatment arm A there are 317 subjects and 400 time points in the P matrix. The
influence array has subject as the first dimension, and for each subject it has an image of the
P matrix containing that subject’s influence on each value in P , i.e., influence[1, ,] is the
influence of subject 1 on P . The influence has one extra row, however; the first row for each
subject is the influence of that subject on p0, the initial state probabilities. For this data set

17

everyone starts in the entry state, p0 will always be (0, 0, 0, 1), and so this first influence row
will be zero; this does not hold if not all subjects start in the same state.

As an exercise we will calculate the mean time in state out to 48 weeks. This is the area
under the individual curves from time 0 to 48. Since the curves are step functions this is simple
sum of rectangles, treating any intervals after 48 months as having 0 width.

> t48 <- pmin(48, curveA$time)

> delta <- diff(c(0, t48, 48)) # width of intervals

> rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve

> rmean <- rfun(rbind(curveA$p0, curveA$pstate), delta)

> round(rmean, 2)

death CR transplant relapse

20.24 16.34 0.00 4.31 7.10

> # Apply the same calculation to each subject's influence slice

> inf <- apply(curveA$influence, 1, rfun, delta=delta)

> # inf is now a 5 state by 310 subject matrix, containing the IJ estimates

> # on the AUC or mean time. The sum of squares is a variance.

> se.rmean <- sqrt(rowSums(inf^2))

> round(se.rmean, 2)

[1] 1.10 1.13 0.00 0.56 0.78

In general, let Ui be the influence of subject i. For some function f(P) of the prevalence
matrix, the influence of subject i will be δi = f(P + Ui) − f(P) and the infinitesimal jackknife
estimate of variance will be

∑
i δ

2. For the simple case of adding up rectangles f(P+Ui)−f(P) =
f(Ui) leading to particularly simple code, but this will not always be the case.

6 State space figures

The state space figures in this document were drawn with a simple utility function statefig. It
has two primary arguments along with standard graphical options of color, line type, etc.

1. A layout vector or matrix. A vector with values of (1, 3, 1) for instance will allocate one
state, then a column with 3 states, then one more state, proceeding from left to right. A
matrix with a single row will do the same, whereas a matrix with one column will proceed
from top to bottom.

2. A k by k connection matrix C where k is the number of states. If Cij 6= 0 then an arrow
is drawn from state i to state j. The row or column names of the matrix are used to label
the states. The lines connecting the states can be straight or curved, see the help file for
an example.

The first few state space diagrams were competing risk models, which use the following
derived function. It accepts a vector of state names, where the first name is the starting state
and the remainder are the possible outcomes.

18

> crisk <- function(what, horizontal = TRUE, ...) {

nstate <- length(what)

connect <- matrix(0, nstate, nstate,

dimnames=list(what, what))

connect[1,-1] <- 1 # an arrow from state 1 to each of the others

if (horizontal) statefig(c(1, nstate-1), connect, ...)

else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...)

}

This next function draws a variation of the illness-death model. It has an initial state, an
absorbing state (normally death), and an optional intermediate state.

> state3 <- function(what, horizontal=TRUE, ...) {

if (length(what) != 3) stop("Should be 3 states")

connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3,

dimnames=list(what, what))

if (horizontal) statefig(1:2, connect, ...)

else statefig(matrix(1:2, ncol=1), connect, ...)

}

The most complex of the state space figures has all 5 states.

> state5 <- function(what, ...) {

sname <- c("Entry", "CR", "Tx", "Rel", "Death")

connect <- matrix(0, 5, 5, dimnames=list(sname, sname))

connect[1, -1] <- c(1,1,1, 1.4)

connect[2, 3:5] <- c(1, 1.4, 1)

connect[3, c(2,4,5)] <- 1

connect[4, c(3,5)] <- 1

statefig(matrix(c(1,3,1)), connect, cex=.8, ...)

}

For figure 5 I want a third row with a single state, but don’t want that state centered. For
this I need to create my own (x,y) coordinate list as the layout parameter. Coordinates must be
between 0 and 1.

> state4 <- function() {

sname <- c("Entry", "CR", "Transplant", "Transplant")

layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4),

y =c(5/6, 1/2, 1/2, 1/6))

connect <- matrix(0,4,4, dimnames=list(sname, sname))

connect[1, 2:3] <- 1

connect[2,4] <- 1

statefig(layout, connect)

}

The statefig function was written to do “good enough” state space figures quickly and easily,
in the hope that users will find it simple enough that diagrams are drawn early and often. Other
packages such as diagram, DiagrammeR, or dagR are far more flexible and can create more
nuanced and well decorated results.

19

7 Conclusion

With a data set such as this we can fit many different multi-state models. These fits are easy to
do, and can give substantial further insight into a data set.

20

