BIRD User's Guide

Ondrej Filip <feela@network.cz>, Pavel Machek <pavel@ucw.cz>, Martin Mares <mj@ucw.cz>, Ondrej

Zajicek <santiago@crfreenet.org>

This document contains user documentation for the BIRD Internet Routing Daemon project.

Contents

1 Introduction

1.1 What is BIRD . .
1.2 Installing BIRD .
1.3 Running BIRD . .
1.4 Privileges

2 About routing tables

2.1 Graceful restart .

3 Configuration

3.1 Introduction . . .
3.2 Global options . .
3.3 Protocol options .

4 Remote control

5 Filters

5.1 Introduction . . .
5.2 Data types
5.3 Operators

5.4 Control structures

5.5 Route attributes .

5.6 Other statements

6 Protocols

6.1 Babel
6.2 BFD
6.3 BGP
6.4 Device
6.5 Direct
6.6 Kernel
6.7 MRT
6.8 OSPF
6.9 Pipe
6.10 RAdv
6.11 RIP
6.12 Static

7 Conclusions

7.1 Future work . ..

7.2 Getting more help

13

16
16
17
20
20
20
22

23
23
24
27
35
36
36
38
39
47
49
54
o7

Chapter 1: Introduction

1.1 What is BIRD

The name ‘BIRD’ is actually an acronym standing for ‘BIRD Internet Routing Daemon’. Let’s take a closer
look at the meaning of the name:

BIRD: Well, we think we have already explained that. It’s an acronym standing for ‘BIRD Internet Routing
Daemon’, you remember, don’t you? :-)

Internet Routing: It’s a program (well, a daemon, as you are going to discover in a moment) which works
as a dynamic router in an Internet type network (that is, in a network running either the IPv4 or the IPv6
protocol). Routers are devices which forward packets between interconnected networks in order to allow
hosts not connected directly to the same local area network to communicate with each other. They also
communicate with the other routers in the Internet to discover the topology of the network which allows
them to find optimal (in terms of some metric) rules for forwarding of packets (which are called routing
tables) and to adapt themselves to the changing conditions such as outages of network links, building of new
connections and so on. Most of these routers are costly dedicated devices running obscure firmware which
is hard to configure and not open to any changes (on the other hand, their special hardware design allows
them to keep up with lots of high-speed network interfaces, better than general-purpose computer does).
Fortunately, most operating systems of the UNIX family allow an ordinary computer to act as a router and
forward packets belonging to the other hosts, but only according to a statically configured table.

A Routing Daemon is in UNIX terminology a non-interactive program running on background which does
the dynamic part of Internet routing, that is it communicates with the other routers, calculates routing
tables and sends them to the OS kernel which does the actual packet forwarding. There already exist other
such routing daemons: routed (RIP only), GateD (non-free), Zebra and MRTD, but their capabilities are
limited and they are relatively hard to configure and maintain.

BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings, to support all the routing
technology used in the today’s Internet or planned to be used in near future and to have a clean extensible
architecture allowing new routing protocols to be incorporated easily. Among other features, BIRD supports:

e both IPv4 and IPv6 protocols

e multiple routing tables

e the Border Gateway Protocol (BGPv4)

e the Routing Information Protocol (RIPv2)

e the Open Shortest Path First protocol (OSPFv2, OSPFv3)

e the Router Advertisements for IPv6 hosts

e a virtual protocol for exchange of routes between different routing tables on a single host
e a command-line interface allowing on-line control and inspection of status of the daemon

e soft reconfiguration (no need to use complex online commands to change the configuration, just edit
the configuration file and notify BIRD to re-read it and it will smoothly switch itself to the new
configuration, not disturbing routing protocols unless they are affected by the configuration changes)

e a powerful language for route filtering

BIRD has been developed at the Faculty of Math and Physics, Charles University, Prague, Czech Republic
as a student project. It can be freely distributed under the terms of the GNU General Public License.
BIRD has been designed to work on all UNIX-like systems. It has been developed and tested under Linux
2.0 to 2.6, and then ported to FreeBSD, NetBSD and OpenBSD, porting to other systems (even non-UNIX
ones) should be relatively easy due to its highly modular architecture.

BIRD supports either IPv4 or IPv6 protocol, but have to be compiled separately for each one. Therefore, a
dualstack router would run two instances of BIRD (one for IPv4 and one for IPv6), with completely separate
setups (configuration files, tools ...).

http://www.zebra.org
http://sourceforge.net/projects/mrt

1.2. Installing BIRD 4

1.2 Installing BIRD

On a recent UNIX system with GNU development tools (GCC, binutils, m4, make) and Perl, installing
BIRD should be as easy as:

./configure

make

make install

vi /usr/local/etc/bird.conf
bird

You can use ./configure --help to get a list of configure options. The most important ones are:
—--enable-ipv6 which enables building of an IPv6 version of BIRD, --with-protocols= to produce a
slightly smaller BIRD executable by configuring out routing protocols you don’t use, and --prefix= to
install BIRD to a place different from /usr/local.

1.3 Running BIRD

You can pass several command-line options to bird:

-c config name

use given configuration file instead of prefiz/etc/bird.conf.
-d

enable debug messages and run bird in foreground.

=D filename of debug log
log debugging information to given file instead of stderr.

-f
run bird in foreground.
-g group
use that group ID, see the next section for details.
-h, --help
display command-line options to bird.
-1
look for a configuration file and a communication socket in the current working directory instead of in
default system locations. However, paths specified by options -c, —s have higher priority.
P

just parse the config file and exit. Return value is zero if the config file is valid, nonzero if there are
some errors.

-P name of PID file
create a PID file with given filename.

-R
apply graceful restart recovery after start.

-s name of communication socket
use given filename for a socket for communications with the client, default is prefix/var/run/bird.ctl.

-u user
drop privileges and use that user ID, see the next section for details.

--version
display bird version.

BIRD writes messages about its work to log files or syslog (according to config).

1.4. Privileges 5

1.4 Privileges

BIRD, as a routing daemon, uses several privileged operations (like setting routing table and using raw
sockets). Traditionally, BIRD is executed and runs with root privileges, which may be prone to security
problems. The recommended way is to use a privilege restriction (options -u, -g). In that case BIRD is
executed with root privileges, but it changes its user and group ID to an unprivileged ones, while using
Linux capabilities to retain just required privileges (capabilities CAP_NET_*). Note that the control socket
is created before the privileges are dropped, but the config file is read after that. The privilege restriction is
not implemented in BSD port of BIRD.

An unprivileged user (as an argument to —u options) may be the user nobody, but it is suggested to use a
new dedicated user account (like bird). The similar considerations apply for the group option, but there is
one more condition — the users in the same group can use birdc to control BIRD.

Finally, there is a possibility to use external tools to run BIRD in an environment with restricted privileges.
This may need some configuration, but it is generally easy — BIRD needs just the standard library, privileges
to read the config file and create the control socket and the CAP_NET_* capabilities.

Chapter 2: About routing tables

BIRD has one or more routing tables which may or may not be synchronized with OS kernel and which may
or may not be synchronized with each other (see the Pipe protocol). Each routing table contains a list of
known routes. Each route consists of:

e network prefix this route is for (network address and prefix length — the number of bits forming the
network part of the address; also known as a netmask)

e preference of this route

e [P address of router which told us about this route

e [P address of router we should forward the packets to using this route
e other attributes common to all routes

e dynamic attributes defined by protocols which may or may not be present (typically protocol metrics)

Routing table maintains multiple entries for a network, but at most one entry for one network and one
protocol. The entry with the highest preference is used for routing (we will call such an entry the selected
route). If there are more entries with the same preference and they are from the same protocol, the protocol
decides (typically according to metrics). If they aren’t, an internal ordering is used to break the tie. You
can get the list of route attributes in the Route attributes section.

Each protocol is connected to a routing table through two filters which can accept, reject and modify the
routes. An export filter checks routes passed from the routing table to the protocol, an import filter checks
routes in the opposite direction. When the routing table gets a route from a protocol, it recalculates the
selected route and broadcasts it to all protocols connected to the table. The protocols typically send the
update to other routers in the network. Note that although most protocols are interested in receiving just
selected routes, some protocols (e.g. the Pipe protocol) receive and process all entries in routing tables
(accepted by filters).

Usually, a routing table just chooses a selected route from a list of entries for one network. But if the
sorted option is activated, these lists of entries are kept completely sorted (according to preference or some
protocol-dependent metric). This is needed for some features of some protocols (e.g. secondary option of
BGP protocol, which allows to accept not just a selected route, but the first route (in the sorted list) that
is accepted by filters), but it is incompatible with some other features (e.g. deterministic med option of
BGP protocol, which activates a way of choosing selected route that cannot be described using comparison
and ordering). Minor advantage is that routes are shown sorted in show route, minor disadvantage is that
it is slightly more computationally expensive.

2.1 Graceful restart

When BIRD is started after restart or crash, it repopulates routing tables in an uncoordinated manner, like
after clean start. This may be impractical in some cases, because if the forwarding plane (i.e. kernel routing
tables) remains intact, then its synchronization with BIRD would temporarily disrupt packet forwarding
until protocols converge. Graceful restart is a mechanism that could help with this issue. Generally, it
works by starting protocols and letting them repopulate routing tables while deferring route propagation
until protocols acknowledge their convergence. Note that graceful restart behavior have to be configured
for all relevant protocols and requires protocol-specific support (currently implemented for Kernel and BGP
protocols), it is activated for particular boot by option -R.

Chapter 3: Configuration

3.1 Introduction

BIRD is configured using a text configuration file. Upon startup, BIRD reads prefiz/etc/bird.conf (unless
the -c command line option is given). Configuration may be changed at user’s request: if you modify the
config file and then signal BIRD with SIGHUP, it will adjust to the new config. Then there’s the client which
allows you to talk with BIRD in an extensive way.

In the config, everything on a line after # or inside /* */ is a comment, whitespace characters are treated as
a single space. If there’s a variable number of options, they are grouped using the { } brackets. Each option
is terminated by a ;. Configuration is case sensitive. There are two ways how to name symbols (like protocol
names, filter names, constants etc.). You can either use a simple string starting with a letter followed by
any combination of letters and numbers (e.g. "R123”, "myfilter”, "bgp5”) or you can enclose the name into
apostrophes (’) and than you can use any combination of numbers, letters. hyphens, dots and colons (e.g.
7’1:strange-name’, 7’-NAME-"", ”’cool::name’”).

Here is an example of a simple config file. It enables synchronization of routing tables with OS kernel, scans
for new network interfaces every 10 seconds and runs RIP on all network interfaces found.

protocol kernel {

persist; # Don’t remove routes on BIRD shutdown
scan time 20; # Scan kernel routing table every 20 seconds
export all; # Default is export none
}
protocol device {
scan time 10; # Scan interfaces every 10 seconds
}
protocol rip {
export all;
import all;

interface "x";

3.2 Global options

include "filename"
This statement causes inclusion of a new file. Filename could also be a wildcard, in that case matching
files are included in alphabetic order. The maximal depth is 8. Note that this statement could be used
anywhere in the config file, not just as a top-level option.

log "filename"|syslog [name namel|stderr alll{ list of classes }

Set logging of messages having the given class (either all or { error|trace [, ...] } etc.) into
selected destination (a file specified as a filename string, syslog with optional name argument, or
the stderr output). Classes are: info, warning, error and fatal for messages about local problems,
debug for debugging messages, trace when you want to know what happens in the network, remote for
messages about misbehavior of remote machines, auth about authentication failures, bug for internal
BIRD bugs. You may specify more than one log line to establish logging to multiple destinations.
Default: log everything to the system log.

debug protocols all|off|{ states|routes|filters|interfaces|events|packets [, ...] }
Set global defaults of protocol debugging options. See debug in the following section. Default: off.

debug commands number
Control logging of client connections (0 for no logging, 1 for logging of connects and disconnects, 2 and
higher for logging of all client commands). Default: 0.

7

3.2. Global options 8

debug latency switch
Activate tracking of elapsed time for internal events. Recent events could be examined using dump
events command. Default: off.

debug latency limit time
If debug latency is enabled, this option allows to specify a limit for elapsed time. Events exceeding
the limit are logged. Default: 1 s.

watchdog warning time
Set time limit for I/O loop cycle. If one iteration took more time to complete, a warning is logged.
Default: 5 s.

watchdog timeout time
Set time limit for I/O loop cycle. If the limit is breached, BIRD is killed by abort signal. The timeout
has effective granularity of seconds, zero means disabled. Default: disabled (0).

mrtdump "filename"
Set MRTdump file name. This option must be specified to allow MRTdump feature. Default: no dump
file.

mrtdump protocols allloff|{ states|messages [, ...] }
Set global defaults of MRTdump options. See mrtdump in the following section. Default: off.

filter name local variables{ commands }
Define a filter. You can learn more about filters in the following chapter.

function name (parameters) local variables { commands }
Define a function. You can learn more about functions in the following chapter.

protocol riplospflbgp|... [name [from name2l] { protocol options }
Define a protocol instance called name (or with a name like ”rip5” generated automatically if you
don’t specify any name). You can learn more about configuring protocols in their own chapters. When
from mame2 expression is used, initial protocol options are taken from protocol or template name2
You can run more than one instance of most protocols (like RIP or BGP). By default, no instances are
configured.

template rip|bgp|... [name [from name2]] { protocol options }
Define a protocol template instance called name (or with a name like "bgpl” generated automatically
if you don’t specify any name). Protocol templates can be used to group common options when many
similarly configured protocol instances are to be defined. Protocol instances (and other templates) can
use templates by using from expression and the name of the template. At the moment templates (and
from expression) are not implemented for OSPF protocol.

define constant = expression
Define a constant. You can use it later in every place you could use a value of the same type. Be-
sides, there are some predefined numeric constants based on /etc/iproute2/rt_* files. A list of defined
constants can be seen (together with other symbols) using ’show symbols’ command.

router id IPv4 address
Set BIRD’s router ID. It’s a world-wide unique identification of your router, usually one of router’s
IPv4 addresses. Default: in IPv4 version, the lowest IP address of a non-loopback interface. In IPv6
version, this option is mandatory.

router id from [-] ["mask" 1 [prefiz 1 [, ...]
Set BIRD’s router ID based on an IP address of an interface specified by an interface pattern. The
option is applicable for IPv4 version only. See interface (p.11) section for detailed description of
interface patterns with extended clauses.

listen bgp [address address] [port port] [duall
This option allows to specify address and port where BGP protocol should listen. It is global option
as listening socket is common to all BGP instances. Default is to listen on all addresses (0.0.0.0) and
port 179. In IPv6 mode, option dual can be used to specify that BGP socket should accept both IPv4

3.3. Protocol options 9

and IPv6 connections (but even in that case, BIRD would accept IPv6 routes only). Such behavior
was default in older versions of BIRD.

graceful restart wait number
During graceful restart recovery, BIRD waits for convergence of routing protocols. This option allows
to specify a timeout for the recovery to prevent waiting indefinitely if some protocols cannot converge.
Default: 240 seconds.

timeformat route|protocol|base|log "formatl" [limit "format2"]
This option allows to specify a format of date/time used by BIRD. The first argument specifies for
which purpose such format is used. route is a format used in ’show route’ command output, protocol
is used in ’show protocols’ command output, base is used for other commands and log is used in a log
file.

7 format1” is a format string using strftime(3) notation (see man strftime for details). limit> and
"format2” allow to specify the second format string for times in past deeper than limit seconds. There
are few shorthands: iso long is a ISO 8601 datetime format (YYYY-MM-DD hh:mm:ss) that can
be also specified using "%F %T". iso short is a variant of ISO 8601 that uses just the time format
(hh:mm:ss) for near times (up to 20 hours in the past) and the date format (YYYY-MM-DD) for far
times. This is a shorthand for "%T" 72000 "%F".

By default, BIRD uses the iso short format for route and protocol times, and the iso long format
for base and log times.

In pre-1.4.0 versions, BIRD used an short, ad-hoc format for route and protocol times, and a iso
long similar format (DD-MM-YYYY hh:mm:ss) for base and log. These timeformats could be set by
old short and old long compatibility shorthands.

table name [sorted]
Create a new routing table. The default routing table is created implicitly, other routing tables have
to be added by this command. Option sorted can be used to enable sorting of routes, see sorted table
(p. 6) description for details.

roa table name [{ roa table options ... }]
Create a new ROA (Route Origin Authorization) table. ROA tables can be used to validate route
origination of BGP routes. A ROA table contains ROA entries, each consist of a network prefix, a max
prefix length and an AS number. A ROA entry specifies prefixes which could be originated by that AS
number. ROA tables could be filled with data from RPKI (RFC 6480) or from public databases like
Whois. ROA tables are examined by roa_check() operator in filters.

Currently, there is just one option, roa prefizr max num as num, which can be used to populate the
ROA table with static ROA entries. The option may be used multiple times. Other entries can be
added dynamically by add roa command.

eval expr
Evaluates given filter expression. It is used by us for testing of filters.

3.3 Protocol options

For each protocol instance, you can configure a bunch of options. Some of them (those described in this
section) are generic, some are specific to the protocol (see sections talking about the protocols).

Several options use a switch argument. It can be either on, yes or a numeric expression with a non-zero
value for the option to be enabled or off, no or a numeric expression evaluating to zero to disable it. An
empty switch is equivalent to on (”silence means agreement”).

preference expr
Sets the preference of routes generated by this protocol. Default: protocol dependent.

disabled switch
Disables the protocol. You can change the disable/enable status from the command line interface

without needing to touch the configuration. Disabled protocols are not activated. Default: protocol is
enabled.

http://www.rfc-editor.org/info/rfc6480

3.3. Protocol options 10

debug allloff|{ states|routes|filters|interfaces|events|packets [, ...] }
Set protocol debugging options. If asked, each protocol is capable of writing trace messages about its
work to the log (with category trace). You can either request printing of all trace messages or only of
the types selected: states for protocol state changes (protocol going up, down, starting, stopping etc.),
routes for routes exchanged with the routing table, filters for details on route filtering, interfaces
for interface change events sent to the protocol, events for events internal to the protocol and packets
for packets sent and received by the protocol. Default: off.

mrtdump all|off|{ states|messages [, ...] }
Set protocol MRTdump flags. MRTdump is a standard binary format for logging information from
routing protocols and daemons. These flags control what kind of information is logged from the protocol
to the MRTdump file (which must be specified by global mrtdump option, see the previous section).
Although these flags are similar to flags of debug option, their meaning is different and protocol-specific.
For BGP protocol, states logs BGP state changes and messages logs received BGP messages. Other
protocols does not support MRTdump yet.

router id IPv4 address

This option can be used to override global router id for a given protocol. Default: uses global router
id.

import all | none | filter name | filter { filter commands } | where filter expression
Specify a filter to be used for filtering routes coming from the protocol to the routing table. all is
shorthand for where true and none is shorthand for where false. Default: all.

export filter
This is similar to the import keyword, except that it works in the direction from the routing table to
the protocol. Default: none.

import keep filtered switch
Usually, if an import filter rejects a route, the route is forgotten. When this option is active, these
routes are kept in the routing table, but they are hidden and not propagated to other protocols. But
it is possible to show them using show route filtered. Note that this option does not work for the
pipe protocol. Default: off.

import limit [number | off 1 [action warn | block | restart | disable]
Specify an import route limit (a maximum number of routes imported from the protocol) and optionally
the action to be taken when the limit is hit. Warn action just prints warning log message. Block action
discards new routes coming from the protocol. Restart and disable actions shut the protocol down like
appropriate commands. Disable is the default action if an action is not explicitly specified. Note that
limits are reset during protocol reconfigure, reload or restart. Default: off.

receive limit [number | off] [action warn | block | restart | disablel
Specify an receive route limit (a maximum number of routes received from the protocol and remem-
bered). It works almost identically to import limit option, the only difference is that if import keep
filtered option is active, filtered routes are counted towards the limit and blocked routes are forgot-
ten, as the main purpose of the receive limit is to protect routing tables from overflow. Import limit,
on the contrary, counts accepted routes only and routes blocked by the limit are handled like filtered
routes. Default: off.

export limit [number | off] [action warn | block | restart | disable]
Specify an export route limit, works similarly to the import limit option, but for the routes exported
to the protocol. This option is experimental, there are some problems in details of its behavior —
the number of exported routes can temporarily exceed the limit without triggering it during protocol
reload, exported routes counter ignores route blocking and block action also blocks route updates of
already accepted routes — and these details will probably change in the future. Default: off.

description "text"
This is an optional description of the protocol. It is displayed as a part of the output of 'show protocols
all’ command.

table name
Connect this protocol to a non-default routing table.

3.3. Protocol options 11

vrf "text"|default
Associate the protocol with specific VRF. The protocol will be restricted to interfaces assigned to the
VRF and will use sockets bound to the VRF. A corresponding VRF interface must exist on OS level.
For kernel protocol, an appropriate table still must be explicitly selected by table option.

By selecting default, the protocol is associated with the default VRF; i.e., it will be restricted to
interfaces not assigned to any regular VRF. That is different from not specifying vrf at all, in which
case the protocol may use any interface regardless of its VRF status.

Note that for proper VRF support it is necessary to use Linux kernel version at least 4.14, older versions
have limited VRF implementation. Before Linux kernel 5.0, a socket bound to a port in default VRF
collide with others in regular VRFs.

There are several options that give sense only with certain protocols:

interface [-] ["mask" 1 [prefix 1 [, ...1 [{ option; [..]1 }]
Specifies a set of interfaces on which the protocol is activated with given interface-specific options. A
set of interfaces specified by one interface option is described using an interface pattern. The interface
pattern consists of a sequence of clauses (separated by commas), each clause is a mask specified as a
shell-like pattern. Interfaces are matched by their name.

An interface matches the pattern if it matches any of its clauses. If the clause begins with -, matching
interfaces are excluded. Patterns are processed left-to-right, thus interface "ethO", -"eth*", "*";
means ethO and all non-ethernets.

Some protocols (namely OSPFv2 and Direct) support extended clauses that may contain a mask, a
prefix, or both of them. An interface matches such clause if its name matches the mask (if specified)
and its address matches the prefix (if specified). Extended clauses are used when the protocol handles
multiple addresses on an interface independently.

An interface option can be used more times with different interface-specific options, in that case for
given interface the first matching interface option is used.

This option is allowed in Babel, BED, Direct, OSPF, RAdv and RIP protocols, but in OSPF protocol
it is used in the area subsection.

Default: none.
Examples:

interface "#" { type broadcast; }; - start the protocol on all interfaces with type broadcast
option.

interface "ethl", "eth4", "ethb5" { type ptp; }; - start the protocol on enumerated interfaces
with type ptp option.

interface -192.168.1.0/24, 192.168.0.0/16; - start the protocol on all interfaces that have ad-
dress from 192.168.0.0/16, but not from 192.168.1.0/24.

interface -192.168.1.0/24, 192.168.0.0/16; - start the protocol on all interfaces that have ad-
dress from 192.168.0.0/16, but not from 192.168.1.0/24.

interface "eth*" 192.168.1.0/24; - start the protocol on all ethernet interfaces that have address
from 192.168.1.0/24.

tx class|dscp num
This option specifies the value of ToS/DS/Class field in IP headers of the outgoing protocol packets.
This may affect how the protocol packets are processed by the network relative to the other network
traffic. With class keyword, the value (0-255) is used for the whole ToS/Class octet (but two bits
reserved for ECN are ignored). With dscp keyword, the value (0-63) is used just for the DS field in
the octet. Default value is OxcO (DSCP 0x30 - CS6).

tx priority num
This option specifies the local packet priority. This may affect how the protocol packets are processed
in the local TX queues. This option is Linux specific. Default value is 7 (highest priority, privileged
traffic).

3.3. Protocol options 12

password "password" [{ password options } 1]
Specifies a password that can be used by the protocol as a shared secret key. Password option can be
used more times to specify more passwords. If more passwords are specified, it is a protocol-dependent
decision which one is really used. Specifying passwords does not mean that authentication is enabled,
authentication can be enabled by separate, protocol-dependent authentication option.

This option is allowed in BFD, OSPF and RIP protocols. BGP has also password option, but it is
slightly different and described separately. Default: none.

Password option can contain section with some (not necessary all) password sub-options:

id num
ID of the password, (1-255). If it is not used, BIRD will choose ID based on an order of the password
item in the interface. For example, second password item in one interface will have default ID 2. ID is
used by some routing protocols to identify which password was used to authenticate protocol packets.

generate from "time"
The start time of the usage of the password for packet signing. The format of time is dd-mm-yyyy
HH:MM:SS.

generate to "time"
The last time of the usage of the password for packet signing.

accept from "time"
The start time of the usage of the password for packet verification.

accept to "trme"
The last time of the usage of the password for packet verification.

from "time"
Shorthand for setting both generate from and accept from.

to "time"
Shorthand for setting both generate to and accept to.

algorithm (keyed md5 | keyed shal | hmac shal | hmac sha256 | hmac sha384 | hmac shab512)
The message authentication algorithm for the password when cryptographic authentication is enabled.
The default value depends on the protocol. For RIP and OSPFv2 it is Keyed-MD5 (for compatibility),
for OSPFv3 protocol it is HMAC-SHA-256.

Chapter 4: Remote control

You can use the command-line client birdc to talk with a running BIRD. Communication is done using a
bird.ctl UNIX domain socket (unless changed with the —s option given to both the server and the client).
The commands can perform simple actions such as enabling/disabling of protocols, telling BIRD to show
various information, telling it to show routing table filtered by filter, or asking BIRD to reconfigure. Press
7 at any time to get online help. Option -r can be used to enable a restricted mode of BIRD client, which
allows just read-only commands (show ...). Option -v can be passed to the client, to make it dump numeric
return codes along with the messages. You do not necessarily need to use birdc to talk to BIRD, your own
applications could do that, too — the format of communication between BIRD and birdc is stable (see the
programmer’s documentation).

There is also lightweight variant of BIRD client called birdcl, which does not support command line
editing and history and has minimal dependencies. This is useful for running BIRD in resource constrained
environments, where Readline library (required for regular BIRD client) is not available.

Many commands have the name of the protocol instance as an argument. This argument can be omitted if
there exists only a single instance.

Here is a brief list of supported functions:

show status
Show router status, that is BIRD version, uptime and time from last reconfiguration.

show interfaces [summary]
Show the list of interfaces. For each interface, print its type, state, MTU and addresses assigned.

show protocols [all]
Show list of protocol instances along with tables they are connected to and protocol status, possibly
giving verbose information, if all is specified.

show ospf interface [name] ["interface"]
Show detailed information about OSPF interfaces.

show ospf neighbors [name] ["interface"]
Show a list of OSPF neighbors and a state of adjacency to them.

show ospf state [all]l [namel
Show detailed information about OSPF areas based on a content of the link-state database. It shows
network topology, stub networks, aggregated networks and routers from other areas and external routes.
The command shows information about reachable network nodes, use option all to show information
about all network nodes in the link-state database.

show ospf topology [all] [name]
Show a topology of OSPF areas based on a content of the link-state database. It is just a stripped-down
version of ’show ospf state’.

show ospf lsadb [global | area id | link] [type num] [lsid id] [self | router id] [namel
Show contents of an OSPF LSA database. Options could be used to filter entries.

show rip interfaces [name] ["interface"]
Show detailed information about RIP interfaces.

show rip neighbors [name] ["interface"]
Show a list of RIP neighbors and associated state.

show static [name]
Show detailed information about static routes.

show bfd sessions [namel
Show information about BFD sessions.

show symbols [table|filter|function|protocol|template|roalsymbol]
Show the list of symbols defined in the configuration (names of protocols, routing tables etc.).

13

14

show route [[for] prefiz|IP] [table t] [filter f|where c] [(export|preexport|noexport) pl
[protocol pl [options]
Show contents of a routing table (by default of the main one or the table attached to a respective
protocol), that is routes, their metrics and (in case the all switch is given) all their attributes.

You can specify a prefix if you want to print routes for a specific network. If you use for prefiz or IP,
you’ll get the entry which will be used for forwarding of packets to the given destination. By default,
all routes for each network are printed with the selected one at the top, unless primary is given in
which case only the selected route is shown.

You can also ask for printing only routes processed and accepted by a given filter (filter name or
filter { filter } or matching a given condition (where condition).

The export, preexport and noexport switches ask for printing of routes that are exported to the
specified protocol. With preexport, the export filter of the protocol is skipped. With noexport,
routes rejected by the export filter are printed instead. Note that routes not exported to the protocol
for other reasons (e.g. secondary routes or routes imported from that protocol) are not printed even
with noexport.

You can also select just routes added by a specific protocol. protocol p.

If BIRD is configured to keep filtered routes (see import keep filtered option), you can show them
instead of routes by using filtered switch.

The stats switch requests showing of route statistics (the number of networks, number of routes before
and after filtering). If you use count instead, only the statistics will be printed.

mrt dump table name|"pattern" to "filename" [filter f|where c]
Dump content of a routing table to a specified file in MRT table dump format. See MRT protocol
(p. 38) for details.

show roa [prefix | in prefiz | for prefir] [as num] [table t]
Show contents of a ROA table (by default of the first one). You can specify a prefiz to print ROA
entries for a specific network. If you use for prefiz, you’ll get all entries relevant for route validation
of the network prefix; i.e., ROA entries whose prefixes cover the network prefix. Or you can use in
prefiz to get ROA entries covered by the network prefix. You could also use as option to show just
entries for given AS.

add roa prefir max num as num [table t¢]
Add a new ROA entry to a ROA table. Such entry is called dynamic compared to static entries
specified in the config file. These dynamic entries survive reconfiguration.

delete roa prefic max num as num [table t]
Delete the specified ROA entry from a ROA table. Only dynamic ROA entries (i.e., the ones added
by add roa command) can be deleted.

flush roa [table t]
Remove all dynamic ROA entries from a ROA table.

configure [soft] ["config file"] [timeout [num]]
Reload configuration from a given file. BIRD will smoothly switch itself to the new configuration,
protocols are reconfigured if possible, restarted otherwise. Changes in filters usually lead to restart of
affected protocols.

If soft option is used, changes in filters does not cause BIRD to restart affected protocols, therefore
already accepted routes (according to old filters) would be still propagated, but new routes would be
processed according to the new filters.

If timeout option is used, config timer is activated. The new configuration could be either confirmed
using configure confirm command, or it will be reverted to the old one when the config timer expires.
This is useful for cases when reconfiguration breaks current routing and a router becomes inaccessible
for an administrator. The config timeout expiration is equivalent to configure undo command. The
timeout duration could be specified, default is 300 s.

configure confirm
Deactivate the config undo timer and therefore confirm the current configuration.

15

configure undo
Undo the last configuration change and smoothly switch back to the previous (stored) configuration.
If the last configuration change was soft, the undo change is also soft. There is only one level of undo,
but in some specific cases when several reconfiguration requests are given immediately in a row and
the intermediate ones are skipped then the undo also skips them back.

configure check ["config file"]
Read and parse given config file, but do not use it. useful for checking syntactic and some semantic
validity of an config file.

enable|disable|restart name|"pattern"|all
Enable, disable or restart a given protocol instance, instances matching the pattern or all instances.

reload [in|out] name|"pattern"|all
Reload a given protocol instance, that means re-import routes from the protocol instance and re-
export preferred routes to the instance. If in or out options are used, the command is restricted to
one direction (re-import or re-export).

This command is useful if appropriate filters have changed but the protocol instance was not restarted
(or reloaded), therefore it still propagates the old set of routes. For example when configure soft
command was used to change filters.

Re-export always succeeds, but re-import is protocol-dependent and might fail (for example, if BGP
neighbor does not support route-refresh extension). In that case, re-export is also skipped. Note that
for the pipe protocol, both directions are always reloaded together (in or out options are ignored in
that case).

down
Shut BIRD down.

debug protocol|pattern|all all|off|{ states|routes|filters|events|packets [, ...] }
Control protocol debugging.

dump resources|sockets|interfaces|neighbors|attributes|routes|protocols
Dump contents of internal data structures to the debugging output.

echo allloff|{ list of log classes } [buffer-size]
Control echoing of log messages to the command-line output. See log option (p.7) for a list of log
classes.

eval expr
Evaluate given expression.

Chapter 5: Filters

5.1 Introduction

BIRD contains a simple programming language. (No, it can’t yet read mail :-). There are two objects in this
language: filters and functions. Filters are interpreted by BIRD core when a route is being passed between
protocols and routing tables. The filter language contains control structures such as if’s and switches, but
it allows no loops. An example of a filter using many features can be found in filter/test.conf.

Filter gets the route, looks at its attributes and modifies some of them if it wishes. At the end, it decides
whether to pass the changed route through (using accept) or whether to reject it. A simple filter looks
like this:

filter not_too_far
int var;
{
if defined(rip_metric) then
var = rip_metric;
else {
var = 1;
rip_metric = 1;
}
if rip_metric > 10 then
reject "RIP metric is too big";
else
accept "ok";

}

As you can see, a filter has a header, a list of local variables, and a body. The header consists of the filter
keyword followed by a (unique) name of filter. The list of local variables consists of type name; pairs where
each pair defines one local variable. The body consists of { statements }. Each statement is terminated by
a ;. You can group several statements to a single compound statement by using braces ({ statements })
which is useful if you want to make a bigger block of code conditional.

BIRD supports functions, so that you don’t have to repeat the same blocks of code over and over. Functions
can have zero or more parameters and they can have local variables. Recursion is not allowed. Function
definitions look like this:

function name ()
int local_variable;

{
local_variable = 5;
}
function with_parameters (int parameter)
{
print parameter;
}

Unlike in C, variables are declared after the function line, but before the first {. You can’t declare variables
in nested blocks. Functions are called like in C: name () ; with_parameters(5) ;. Function may return values
using the return [ezpr/ command. Returning a value exits from current function (this is similar to C).
Filters are declared in a way similar to functions except they can’t have explicit parameters. They get a
route table entry as an implicit parameter, it is also passed automatically to any functions called. The filter
must terminate with either accept or reject statement. If there’s a runtime error in filter, the route is
rejected.

A nice trick to debug filters is to use show route filter name from the command line client. An example
session might look like:

16

5.2. Data types 17

pavel@bug:~/bird$./birdc -s bird.ctl
BIRD 0.0.0 ready.
bird> show route

10.0.0.0/8 dev eth0 [directl 23:21] (240)
195.113.30.2/32 dev tunll [directl 23:21] (240)
127.0.0.0/8 dev lo [directl 23:21] (240)

bird> show route 7

show route [<prefix>] [table <t>] [filter <f>] [all] [primary]...
bird> show route filter { if 127.0.0.5 ~ net then accept; }
127.0.0.0/8 dev lo [directl 23:21] (240)

bird>

5.2 Data types

Each variable and each value has certain type. Booleans, integers and enums are incompatible with each
other (that is to prevent you from shooting in the foot).

bool
This is a boolean type, it can have only two values, true and false. Boolean is the only type you can
use in if statements.

int
This is a general integer type. It is an unsigned 32bit type; i.e., you can expect it to store values from
0 to 4294967295. Overflows are not checked. You can use 0x1234 syntax to write hexadecimal values.

pair
This is a pair of two short integers. Each component can have values from 0 to 65535. Literals of
this type are written as (1234,5678). The same syntax can also be used to construct a pair from two
arbitrary integer expressions (for example (1+2,a)).

quad
This is a dotted quad of numbers used to represent router IDs (and others). Each component can have
a value from 0 to 255. Literals of this type are written like IPv4 addresses.

string
This is a string of characters. There are no ways to modify strings in filters. You can pass them between
functions, assign them to variables of type string, print such variables, use standard string comparison
operations (e.g. =, '=, <, >, <=, >=), but you can’t concatenate two strings. String literals are
written as "This is a string constant". Additionally matching (~, !~) operators could be used
to match a string value against a shell pattern (represented also as a string).

ip
This type can hold a single IP address. Depending on the compile-time configuration of BIRD you
are using, it is either an IPv4 or IPv6 address. IP addresses are written in the standard notation
(10.20.30.40 or fec0:3:4::1). You can apply special operator .mask(num) on values of type ip. It
masks out all but first num bits from the IP address. So 1.2.3.4.mask(8) = 1.0.0.0 is true.

prefix
This type can hold a network prefix consisting of IP address and prefix length. Prefix literals are
written as ipaddress/pzlen, or ipaddress/netmask. There are two special operators on prefixes: .ip
which extracts the IP address from the pair, and .len, which separates prefix length from the pair.
S01.2.0.0/16.1en = 16 is true.

ec
This is a specialized type used to represent BGP extended community values. It is essentially a 64bit
value, literals of this type are usually written as (kind, key, value), where kind is a kind of extended
community (e.g. rt / ro for a route target / route origin communities), the format and possible values
of key and value are usually integers, but it depends on the used kind. Similarly to pairs, ECs can
be constructed using expressions for key and value parts, (e.g. (ro, myas, 3*10), where myas is an
integer variable).

5.2. Data types 18

1c
This is a specialized type used to represent BGP large community values. It is essentially a triplet
of 32bit values, where the first value is reserved for the AS number of the issuer, while meaning of
remaining parts is defined by the issuer. Literals of this type are written as (123, 456, 789), with
any integer values. Similarly to pairs, LCs can be constructed using expressions for its parts, (e.g.
(myas, 10+20, 3*10), where myas is an integer variable).

int|pair|quad|ip|prefix|ec|lc|enun set
Filters recognize four types of sets. Sets are similar to strings: you can pass them around but you can’t
modify them. Literals of type int set look like [1, 2, 5..7]. As you can see, both simple values
and ranges are permitted in sets.

For pair sets, expressions like (123,%*) can be used to denote ranges (in that case
(123,0)..(123,65535)). You can also use (123,5..100) for range (123,5)..(123,100). You can
also use * and a..b expressions in the first part of a pair, note that such expressions are translated
to a set of intervals, which may be memory intensive. E.g. (*,4..20) is translated to (0,4..20),
(1,4..20), (2,4..20), ... (65535, 4..20).

EC sets use similar expressions like pair sets, e.g. (rt, 123, 10..20) or (ro, 123, *). Expressions
requiring the translation (like (rt, *, 3)) are not allowed (as they usually have 4B range for ASNs).

Also LC sets use similar expressions like pair sets. You can use ranges and wildcards, but if one field
uses that, more specific (later) fields must be wildcards. E.g., (10, 20..30, *) or (10, 20, 30..40)
is valid, while (10, *, 20..30) or (10, 20..30, 40) is not valid.

You can also use expressions for int, pair, EC and LC set values. However, it must be possible to
evaluate these expressions before daemon boots. So you can use only constants inside them. E.g.

define one=1;
define myas=64500;
int set odds;

pair set ps;

ec set es;

odds = [one, 2+1, 6-one, 2*2*x2-1, 9, 11]1;
ps = [(1,one+one), (3,4)..(4,8), (5,%), (6,3..6), (7..9,%) 1;
[(r

es = t, myas, 3%10), (rt, myas+one, 0..16%16%16-1), (ro, myas+2, *)];

Sets of prefixes are special: their literals does not allow ranges, but allows prefix patterns that are
written as ipaddress/pxlen{low,high}. Prefix ipl/lenl matches prefix pattern ip2/len2{l,h} if the
first min(lenl, len2) bits of ipl and ip2 are identical and lenl <= ipl <= len2. A valid prefix
pattern has to satisfy low <= high, but pxlen is not constrained by low or high. Obviously, a prefix
matches a prefix set literal if it matches any prefix pattern in the prefix set literal.

There are also two shorthands for prefix patterns: address/len+ is a shorthand for ad-
dress/len{len,mazlen} (where mazlen is 32 for IPv4 and 128 for IPv6), that means network pre-
fix address/len and all its subnets. address/len- is a shorthand for address/len{0,len}, that means
network prefix address/len and all its supernets (network prefixes that contain it).

For example, [1.0.0.0/8, 2.0.0.0/8+, 3.0.0.0/8-, 4.0.0.0/8{16,24} 1 matches prefix
1.0.0.0/8, all subprefixes of 2.0.0.0/8, all superprefixes of 3.0.0.0/8 and prefixes 4.X.X.X whose
prefix length is 16 to 24. [0.0.0.0/0{20,24}] matches all prefixes (regardless of IP address) whose
prefix length is 20 to 24, [1.2.3.4/32-] matches any prefix that contains IP address 1.2.3.4.
1.2.0.0/16 ~ [1.0.0.0/8{15,17}] is true, but 1.0.0.0/16 ~ [1.0.0.0/8- 1 is false.

Cisco-style patterns like 10.0.0.0/8 ge 16 le 24 can be expressed in BIRD as 10.0.0.0/8{16,24},
192.168.0.0/16 le 24 as 192.168.0.0/16{16,24} and 192.168.0.0/16 ge 24 as
192.168.0.0/16{24,32}.

enum
Enumeration types are fixed sets of possibilities. You can’t define your own variables of such type, but
some route attributes are of enumeration type. Enumeration types are incompatible with each other.

5.2. Data types 19

bgppath
BGP path is a list of autonomous system numbers. You can’t write literals of this type. There are
several special operators on bgppaths:

P.first returns the first ASN (the neighbor ASN) in path P.
P .1last returns the last ASN (the source ASN) in path P.
P .last_nonaggregated returns the last ASN in the non-aggregated part of the path P.

Both first and last return zero if there is no appropriate ASN, for example if the path contains an
AS set element as the first (or the last) part. If the path ends with an AS set, last_nonaggregated
may be used to get last ASN before any AS set.

P .len returns the length of path P.
P .empty resets path P to empty path.
prepend (P, A) prepends ASN A to path P and returns the result.

delete (P, A) deletes all instances of ASN A from from path P and returns the result. A may also be
an integer set, in that case the operator deletes all ASNs from path P that are also members of set A.

filter(P,A) deletes all ASNs from path P that are not members of integer set A. L.e., filter do
the same as delete with inverted set A.

Statement P = prepend(P, A); can be shortened to P.prepend(A); if P is appropriate route
attribute (for example bgp_path). Similarly for delete and filter.

bgpmask

BGP masks are patterns used for BGP path matching (using path ~ [= 2 3 5 * =] syntax). The
masks resemble wildcard patterns as used by UNIX shells. Autonomous system numbers match them-
selves, * matches any (even empty) sequence of arbitrary AS numbers and ? matches one arbitrary AS
number. For example, if bgp_path is 4 3 2 1, then: bgp_path ~ [= * 4 3 * =] is true, but bgp_path
“ [= * 4 5 x =] is false. BGP mask expressions can also contain integer expressions enclosed in
parenthesis and integer variables, for example [= * 4 (1+2) a =]. You can also use ranges, for ex-
ample [= * 3..5 2 100..200 * =]. There is also old (deprecated) syntax that uses / .. / instead of
[= .. =] and 7 instead of *.

clist
Clist is similar to a set, except that unlike other sets, it can be modified. The type is used for community
list (a set of pairs) and for cluster list (a set of quads). There exist no literals of this type. There are
three special operators on clists:

C'.1len returns the length of clist C.
C .empty resets clist C' to empty clist.

add(C, P) adds pair (or quad) P to clist C' and returns the result. If item P is already in clist C, it
does nothing. P may also be a clist, in that case all its members are added; i.e., it works as clist union.

delete(C, P) deletes pair (or quad) P from clist C' and returns the result. If clist C' does not contain
item P, it does nothing. P may also be a pair (or quad) set, in that case the operator deletes all items
from clist C' that are also members of set P. Moreover, P may also be a clist, which works analogously;
i.e., it works as clist difference.

filter(C, P) deletes all items from clist C' that are not members of pair (or quad) set P. Le., filter
do the same as delete with inverted set P. P may also be a clist, which works analogously; i.e., it
works as clist intersection.

Statement C' = add(C', P); can be shortened to C'.add(P); if C is appropriate route attribute (for
example bgp_community). Similarly for delete and filter.

eclist
Eclist is a data type used for BGP extended community lists. Eclists are very similar to clists, but
they are sets of ECs instead of pairs. The same operations (like add, delete or ~ and !~ membership
operators) can be used to modify or test eclists, with ECs instead of pairs as arguments.

5.3. Operators 20

lclist
Lelist is a data type used for BGP large community lists. Like eclists, Iclists are very similar to
clists, but they are sets of LCs instead of pairs. The same operations (like add, delete or ~ and '~
membership operators) can be used to modify or test lclists, with LCs instead of pairs as arguments.

5.3 Operators

The filter language supports common integer operators (+,-,*,/), parentheses (a*(b+c)), comparison
(a=b, a!=b, a<b, a>=b). Logical operations include unary not (!), and (&&) and or (||). Special operators
include (7, !'™) for ”is (not) element of a set” operation - it can be used on element and set of elements of
the same type (returning true if element is contained in the given set), or on two strings (returning true if
first string matches a shell-like pattern stored in second string) or on IP and prefix (returning true if IP is
within the range defined by that prefix), or on prefix and prefix (returning true if first prefix is more specific
than second one) or on bgppath and bgpmask (returning true if the path matches the mask) or on number
and bgppath (returning true if the number is in the path) or on bgppath and int (number) set (returning
true if any ASN from the path is in the set) or on pair/quad and clist (returning true if the pair/quad is
element of the clist) or on clist and pair/quad set (returning true if there is an element of the clist that is
also a member of the pair/quad set).

There is one operator related to ROA infrastructure - roa_check(). It examines a ROA table and does
RFC 6483 route origin validation for a given network prefix. The basic usage is roa_check(table), which
checks current route (which should be from BGP to have AS_PATH argument) in the specified ROA table
and returns ROA_UNKNOWN if there is no relevant ROA, ROA_VALID if there is a matching ROA, or
ROA_INVALID if there are some relevant ROAs but none of them match. There is also an extended variant
roa_check(table, prefix, asn), which allows to specify a prefix and an ASN as arguments.

5.4 Control structures

Filters support two control structures: conditions and case switches.

Syntax of a condition is: if boolean expression then commandl; else command2; and you can use {
command_1; command_2; ... } instead of either command. The else clause may be omitted. If the
boolean expression is true, commandl is executed, otherwise command?2 is executed.

The case is similar to case from Pascal. Syntax is case expr { else: | num_or_prefix [.. num_or_prefiz]:
statement ; [... 1 }. The expression after case can be of any type which can be on the left side of the
" operator and anything that could be a member of a set is allowed before :. Multiple commands are allowed
without {} grouping. If expr matches one of the : clauses, statements between it and next : statement are
executed. If expr matches neither of the : clauses, the statements after else: are executed.

Here is example that uses if and case structures:

case argl {
2: print "two"; print "I can do more commands without {}";
3 .. 5: print "three to five";
else: print "something else";

if 1234 = i then printn "."; else {
print "not 1234";
print "You need {} around multiple commands";

}

5.5 Route attributes

A filter is implicitly passed a route, and it can access its attributes just like it accesses variables. Attempts
to access undefined attribute result in a runtime error; you can check if an attribute is defined by using

http://www.rfc-editor.org/info/rfc6483

5.5. Route attributes 21

the defined(attribute) operator. One notable exception to this rule are attributes of clist type, where
undefined value is regarded as empty clist for most purposes.

prefix net
Network the route is talking about. Read-only. (See the chapter about routing tables.)

enum scope
The scope of the route. Possible values: SCOPE_HOST for routes local to this host, SCOPE_LINK
for those specific for a physical link, SCOPE_SITE and SCOPE_ORGANIZATION for private routes and
SCOPE_UNIVERSE for globally visible routes. This attribute is not interpreted by BIRD and can be used
to mark routes in filters. The default value for new routes is SCOPE_UNIVERSE.

int preference
Preference of the route. Valid values are 0-65535. (See the chapter about routing tables.)

p from
The router which the route has originated from.

wp gw
Next hop packets routed using this route should be forwarded to.

string proto
The name of the protocol which the route has been imported from. Read-only.

enum source
what protocol has told me about this route. Possible values: RTS_DUMMY, RTS_STATIC, RTS_INHERIT,
RTS_DEVICE, RTS_STATIC_DEVICE, RTS_REDIRECT, RTS_RIP, RTS_OSPF, RTS_OSPF_TA, RTS_OSPF_EXT1,
RTS_OSPF_EXT2, RTS_BGP, RTS_PIPE, RTS_BABEL.

enum cast
Route type (Currently RTC_UNICAST for normal routes, RTC_BROADCAST, RTC_MULTICAST, RTC_ANYCAST
will be used in the future for broadcast, multicast and anycast routes). Read-only.

enum dest
Type of destination the packets should be sent to (RTD-ROUTER for forwarding to a neighboring router,
RTD_DEVICE for routing to a directly-connected network, RTD_MULTIPATH for multipath destinations,
RTD_BLACKHOLE for packets to be silently discarded, RTD_UNREACHABLE, RTD_PROHIBIT for packets that
should be returned with ICMP host unreachable / ICMP administratively prohibited messages). Can
be changed, but only to RTD_BLACKHOLE, RTD_UNREACHABLE or RTD_PROHIBIT.

string ifname
Name of the outgoing interface. Sink routes (like blackhole, unreachable or prohibit) and multipath
routes have no interface associated with them, so ifname returns an empty string for such routes.
Setting it would also change route to a direct one (remove gateway).

int ifindex
Index of the outgoing interface. System wide index of the interface. May be used for interface matching,
however indexes might change on interface creation/removal. Zero is returned for routes with undefined
outgoing interfaces. Read-only.

il igp-metric
The optional attribute that can be used to specify a distance to the network for routes that do not
have a native protocol metric attribute (like ospf_metricl for OSPF routes). It is used mainly by
BGP to compare internal distances to boundary routers (see below). It is also used when the route is
exported to OSPF as a default value for OSPF type 1 metric.

There also exist some protocol-specific attributes which are described in the corresponding protocol sections.

5.6. Other statements 22

5.6 Other statements

The following statements are available:

variable = expr
Set variable to a given value.

accept|reject [expr]
Accept or reject the route, possibly printing expr.

return expr
Return expr from the current function, the function ends at this point.

print|printn expr [, expr...]
Prints given expressions; useful mainly while debugging filters. The printn variant does not terminate
the line.

quitbird
Terminates BIRD. Useful when debugging the filter interpreter.

Chapter 6: Protocols

6.1 Babel

6.1.1 Introduction

The Babel protocol (RFC 6126) is a loop-avoiding distance-vector routing protocol that is robust and efficient
both in ordinary wired networks and in wireless mesh networks. Babel is conceptually very simple in its
operation and ”just works” in its default configuration, though some configuration is possible and in some
cases desirable.

While the Babel protocol is dual stack (i.e., can carry both IPv4 and IPv6 routes over the same IPv6
transport), BIRD presently implements only the IPv6 subset of the protocol. No Babel extensions are
implemented, but the BIRD implementation can coexist with implementations using the extensions (and
will just ignore extension messages).

The Babel protocol implementation in BIRD is currently in alpha stage.

6.1.2 Configuration

Babel supports no global configuration options apart from those common to all other protocols, but supports
the following per-interface configuration options:

protocol babel [<name>] {
interface <interface pattern> {
type <wired|wireless>;
rxcost <number>;
hello interval <number>;
update interval <number>;
port <number>;
tx class|dscp <number>;
tx priority <number>;
rx buffer <number>;
tx length <number>;
check link <switch>;
3
}

type wired|wireless
This option specifies the interface type: Wired or wireless. Wired interfaces are considered more
reliable, and so the default hello interval is higher, and a neighbour is considered unreachable after
only a small number of "hello” packets are lost. On wireless interfaces, hello packets are sent more often,
and the ETX link quality estimation technique is used to compute the metrics of routes discovered
over this interface. This technique will gradually degrade the metric of routes when packets are lost
rather than the more binary up/down mechanism of wired type links. Default: wired.

rxcost num
This specifies the RX cost of the interface. The route metrics will be computed from this value with a
mechanism determined by the interface type. Default: 96 for wired interfaces, 256 for wireless.

hello interval num
Interval at which periodic "hello” messages are sent on this interface, in seconds. Default: 4 seconds.

update interval num
Interval at which periodic (full) updates are sent. Default: 4 times the hello interval.

port number
This option selects an UDP port to operate on. The default is to operate on port 6696 as specified in
the Babel RFC.

23

http://www.rfc-editor.org/info/rfc6126

6.2. BFD 24

tx class|dscp|priority number
These options specify the ToS/DiffServ/Traffic class/Priority of the outgoing Babel packets. See tx
class (p.11) common option for detailed description.

rx buffer number
This option specifies the size of buffers used for packet processing. The buffer size should be bigger
than maximal size of received packets. The default value is the interface MTU, and the value will be
clamped to a minimum of 512 bytes + IP packet overhead.

tx length number
This option specifies the maximum length of generated Babel packets. To avoid IP fragmentation, it
should not exceed the interface MTU value. The default value is the interface MTU value, and the
value will be clamped to a minimum of 512 bytes + IP packet overhead.

check link switch
If set, the hardware link state (as reported by OS) is taken into consideration. When the link disappears
(e.g. an ethernet cable is unplugged), neighbors are immediately considered unreachable and all routes
received from them are withdrawn. It is possible that some hardware drivers or platforms do not
implement this feature. Default: yes.

6.1.3 Attributes

Babel defines just one attribute: the internal babel metric of the route. It is exposed as the babel metric
attribute and has range from 1 to infinity (65535).

6.1.4 Example

protocol babel {

interface "ethx" {
type wired;

};

interface "wlanO", "wlanil" {
type wireless;
hello interval 1;
rxcost 512;

};

interface "tap0O";

This matches the default of babeld: redistribute all addresses
configured on local interfaces, plus re-distribute all routes received
from other babel peers.

export where (source = RTS_DEVICE) || (source = RTS_BABEL);

6.2 BFD

6.2.1 Introduction

Bidirectional Forwarding Detection (BFD) is not a routing protocol itself, it is an independent tool providing
liveness and failure detection. Routing protocols like OSPF and BGP use integrated periodic ”hello” messages
to monitor liveness of neighbors, but detection times of these mechanisms are high (e.g. 40 seconds by default
in OSPF, could be set down to several seconds). BFD offers universal, fast and low-overhead mechanism for
failure detection, which could be attached to any routing protocol in an advisory role.

BFD consists of mostly independent BFD sessions. Each session monitors an unicast bidirectional path
between two BFD-enabled routers. This is done by periodically sending control packets in both