The Implementation of the
Icon Programming Language

RALPH E. GRISWOLD AND MADGE T. GRISWOLD

PRINCETON UNIVERSITY PRESS

This book originally was published by Princeton University Press. It is out of print and
the rights have reverted to the authors, who hereby place it in the public domain.

Library of Congress Cataloging in Publication Data will be
found on the last printed page of this book

ISBN 0-691-08431-9

This book has been composed in Times Roman

CDC is a registered trademark of Control Data Corporation

DEC, PDP, and VAX are trademarks of Digital Equipment Corporation
IBM is a trademark of International Business Machines Corporation
MS-DOS is a trademark of Microsoft Corporation

UNIX is a trademark of AT&T Bell Laboratories

Note: Known errors in the book have been corrected but the book has not been
revised to correspond to subsequent versions of Icon. Corrections made to the
original printing are marked by marginal revision bars.

Ralph E. Griswold and Madge T. Griswold, August 2002

CONTENTS

Preface

Acknowledgments

Chapter 1
INTRODUCTION

1.1 Implementing Programming Languages 4
1.2 The Background for Icon 5

Chapter 2
ICON LANGUAGE OVERVIEW

2.1 The Icon Programming Language 8
2.2 Language Features and the Implementation 36

Chapter 3
ORGANIZATION OF THE IMPLEMENTATION

3.1 The Icon Virtual Machine 41

3.2 Components of the Implementation 41
3.3 The Translator 42

3.4 The Linker 43

3.5 The Run-Time System 44

Chapter 4
VALUES AND VARIABLES

4.1 Descriptors 48

4.2 Blocks 51

4.3 Variables 53

4.4 Descriptors and Blocks in C 56

X

X1

40

47

Vi Contents
Chapter 5

STRINGS AND CSETS 65
5.1 Strings 66

52 Csets 76

Chapter 6

LISTS 80
6.1 Structures for Lists 80

6.2 Queue and Stack Access 84

6.3 Positional Access 92

Chapter 7

SETS AND TABLES 96
7.1 Sets 97

7.2 Tables 100

7.3 Hashing Functions 104

Chapter 8

THE INTERPRETER 110
8.1 Stack-Based Evaluation 110

8.2 Virtual Machine Instructions 111

8.3 The Interpreter Proper 126

Chapter 9

EXPRESSION EVALUATION 130
9.1 Bounded Expressions 130

9.2 Failure 135

9.3 Generators and Goal-Directed Evaluation 139

9.4 Generative Control Structures 152

9.5 Iteration 157

9.6 String Scanning 158

Chapter 10

FUNCTIONS, PROCEDURES, AND CO-EXPRESSIONS 165

10.1 Invocation Expressions 165
10.2 Procedure Blocks 167
10.3 Invocation 169

10.4 Co-Expressions 176

Contents

vii

Chapter 11
STORAGE MANAGEMENT

11.1 Memory Layout 186
11.2 Allocation 191

11.3 Garbage Collection 194
11.4 Predictive Need 215

Chapter 12
RUN-TIME SUPPORT OPERATIONS

12.1 Type Checking and Conversion 224
12.2 Dereferencing and Assignment 229
12.3 Input and Output 240

12.4 Diagnostic Facilities 242

Appendix A
DATA STRUCTURES

Appendix B
VIRTUAL MACHINE INSTRUCTIONS

Appendix C
VIRTUAL MACHINE CODE

Appendix D
ADDING FUNCTIONS AND DATA TYPES

Appendix E
PROJECTS

Appendix F
SOLUTIONS TO SELECTED EXERCISES

References

Index

185

224

245

258

264

279

303

316

325

329

PREFACE

Icon is a high-level, general-purpose programming language that offers a broad
range of string- and list-processing facilities. It also has a novel expression
evaluation mechanism and allows an unusual degree of run-time flexibility.
Because of these features, implementing Icon presents problems considerably
different from those involved with implementing more traditional languages like
Pascal or C.

This book is a study of an implementation of Icon. It differs from the usual
books on compilers in emphasizing the implementation of run-time facilities and
handling of sophisticated language features.

Icon has been implemented for a wide range of computers, from those run-
ning UNIX and VAX/VMS to personal computers running MS-DOS. This is a
description of a real implementation in wide use; it is not a toy. The code that
appears in the book is real code, as it appears in the source.

Readers of this book should have a general familiarity with programming
languages and a general idea of what is involved in implementing a complex
software system. Icon is written in C; a reader who has experience with that
language will find the extensive examples written in C helpful. A reader who has
no C experience, however, can skip the C examples and still grasp the general
discussion.

Several groups of readers will find this book especially useful. One is the
community of individual designers and experimental implementors who want to
implement a language like Icon or to extend an existing implementation of Icon.
Another group includes the growing number of sophisticated personal computer
users who wish to explore languages like Icon. A third group is the academic
community concerned with programming-language implementation techniques.
In this context, the book is useful for personal research as well as for courses in
programming-language implementation issues and techniques, advanced com-
piler design, and in-depth studies of high-level programming languages and their
implementations.

This book does not attempt to cover all aspects of the implementation of
Icon. Instead, it concentrates on central issues and on the more interesting and
novel portions of the implementation. Persons who are interested in the details
of the implementation, and especially those who want to modify the implementa-
tion, will find the source code to be a valuable adjunct to this book. This source
code is in the public domain and is readily available. It is important to have the
correct version, 6.2, for use with this book, since there are other versions that are
considerably different.

X Preface

Requests for Icon and its source code or for other information about Icon
may be directed to:

Icon Project

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

ACKNOWLEDGMENTS

The implementation of Icon described in this book owes much to previous work,
and in particular to implementations of earlier versions of Icon. Major contribu-
tions were made by Cary Coutant, Dave Hanson, Tim Korb, Bill Mitchell, and
Steve Wampler. Walt Hansen, Rob McConeghy, and Janalee O’Bagy also made
significant contributions to this work.

The present system has benefited greatly from persons who have installed
Icon on a variety of machines and operating systems. Rick Fonorow, Bob Gold-
berg, Chris Janton, Mark Langley, Rob McConeghy, Bill Mitchell, Janalee
O’Bagy, John Polstra, Gregg Townsend, and Cheyenne Wills have made sub-
stantial contributions in this area.

The support of the National Science Foundation under Grants MCS75-
01397, MCS79-03890, MCS81-01916, DCR-8320138, DCR-8401831, and
DCR-8502015 was instrumental in the original conception of Icon and has been
invaluable in its subsequent development.

A number of persons contributed to this book. Dave Gudeman, Dave Han-
son, Bill Mitchell, Janalee O’Bagy, Gregg Townsend, and Alan Wendt contri-
buted to the exercises that appear at the ends of chapters and the projects given in
Appendix E. Kathy Cummings, Bill Griswold, Bill Mitchell, Katie Morse, Mike
Tharp, and Gregg Townsend gave the manuscript careful readings and made
numerous suggestions. Janalee O’Bagy not only read the manuscript but also
supplied concepts for presenting and writing the material on expression evalua-
tion.

Finally, Dave Hanson served as an enthusiastic series editor for this book.
His perceptive reading of the manuscript and his supportive and constructive
suggestions made a significant contribution to the final result.

Ralph E. Griswold and Madge T. Griswold

CHAPTER 1

Introduction

PersPECTIVE: The implementation of complex software systems is a fascinating
subject—and an important one. Its theoretical and practical aspects occupy the
attention and energy of many persons and it consumes vast amounts of computa-
tional resources. In general terms, it is a broad subject ranging from operating
systems to programming languages to data-base systems to real-time control sys-
tems, and so on.

Past work in these areas has resulted in an increasingly better understanding
of implementation techniques, more sophisticated and efficient systems, and
tools for automating various aspects of software production. Despite these
advances, the implementation of complex software systems remains challenging
and exciting. The problems are difficult, and every advance in the state of the art
brings new and more difficult problems within reach.

This book addresses a very small portion of the problem of implementing
complex software systems—the implementation of a very high-level program-
ming language that is oriented toward the manipulation of structures and strings
of characters.

In a narrow sense, this book describes in some detail an implementation of a
specific programming language, Icon. In a broader sense, it deals with a
language-design philosophy, an approach to implementation, and techniques that
apply to the implementation of many programming languages as well as related
types of software systems.

The focus of this book is the implementation of programming-language
features that are at a high conceptual level—features that are easy for human
beings to use as opposed to features that fit comfortably on conventional com-
puter architectures. The orientation of the implementation is generality and flexi-
bility, rather than maximum efficiency of execution. The problem domain is
strings and structures rather than numbers. It is these aspects that set the imple-
mentation of Icon apart from more conventional programming-language imple-
mentations.

4 Chapter 1

1.1 IMPLEMENTING PROGRAMMING LANGUAGES

In conventional programming languages, most of the operations that are per-
formed when a program is executed can be determined, statically, by examining
the text of the program. In addition, the operations of most programming
languages have a fairly close correspondence to the architectural characteristics
of the computers on which they are implemented. When these conditions are
met, source-code constructs can be mapped directly into machine instructions for
the computer on which they are to be executed. The term compilation is used for
this translation process, and most persons think of the implementation of a pro-
gramming language in terms of a compiler.

Writing a compiler is a complex and difficult task that requires specialized
training, and the subject of compilation has been studied extensively (Waite and
Goos 1984; Aho, Sethi, and Ullman 1985). Most of the issues of data representa-
tion and code generation are comparatively well understood, and there are now
many tools for automating portions of the compiler-writing task (Lesk 1975;
Johnson 1975).

In addition to the compiler proper, an implementation of a programming
language usually includes a run-time component that contains subroutines for
performing computations that are too complex to compile in-line, such as input,
output, and mathematical functions.

Some programming languages have features whose meanings cannot be
determined statically from the text of a source-language program, but which may
change during program execution. Such features include changes in the meaning
of functions during execution, the creation of new data types at run time, and
self-modifying programs. Some programming languages also have features, such
as pattern matching, that do not have correspondences in the architecture of con-
ventional computers. In such cases, a compiler cannot translate the source pro-
gram directly into executable code. Very high-level operations, such as pattern
matching, and features like automatic storage management significantly increase
the importance and complexity of the run-time system. For languages with these
characteristics—languages such as APL, LISP, SNOBOL4, SETL, Prolog, and
Icon—much of the substance of the implementation is in the run-time system
rather than in translation done by a compiler. While compiler writing is rela-
tively well understood, run-time systems for most programming languages with
dynamic features and very high-level operations are not.

Programming languages with dynamic aspects and novel features are likely
to become more important rather than less important. Different problems benefit
from different linguistic mechanisms. New applications place different values on
speed of execution, memory requirements, quick solutions, programmer time and
talent, and so forth. For these reasons, programming languages continue to proli-
ferate. New programming languages, by their nature, introduce new features.

Introduction 5

All of this creates difficulties for the implementor. Less of the effort involved in
implementations for new languages lies in the comparatively familiar domain of
compilation and more lies in new and unexplored areas, such as pattern matching
and novel expression-evaluation mechanisms.

The programming languages that are the most challenging to implement are
also those that differ most from each other. Nevertheless, there are underlying
principles and techniques that are generally applicable, and existing implementa-
tions contain many ideas that can be used or extended in new implementations.

1.2 THE BACKGROUND FOR ICON

Before describing the Icon programming language and its implementation, some
historical context is needed, since both the language and its implementation are
strongly influenced by earlier work.

Icon has its roots in a series of programming languages that bear the name
SNOBOL. The first SNOBOL language was conceived and implemented in the
early 1960s at Bell Telephone Laboratories in response to the need for a pro-
gramming tool for manipulating strings of characters at a high conceptual level
(Farber, Griswold, and Polonsky 1964). It emphasized ease of programming at
the expense of efficiency of execution; the programmer was considered to be a
more valuable resource than the computer.

This rather primitive language proved to be popular, and it was followed by
successively more sophisticated languages: SNOBOL2, SNOBOL3 (Farber,
Griswold, and Polonsky 1966), and finally SNOBOL4 (Griswold, Poage, and
Polonsky 1971). Throughout the development of these languages, the design
emphasis was on ease of programming rather than ease of implementation
(Griswold 1981). Potentially valuable features were not discarded because they
might be inefficient or difficult to implement. The aggressive pursuit of this phi-
losophy led to unusual language features and to challenging implementation
problems.

SNOBOLA4 still is in wide use. Considering its early origins, some of its
facilities are remarkably advanced. It features a pattern-matching facility with
backtracking control structures that effectively constitutes a sublanguage. SNO-
BOL4 also has a variety of data structures, including tables with associative
lookup. - Functions and operators can be defined and redefined during program
execution. Identifiers can be created at run-time, and a program can even modify
itself by means of run-time compilation.

Needless to say, SNOBOL4 is a difficult language to implement, and most
of the conventional compilation techniques have little applicability to it. Its ini-
tial implementation was, nonetheless, sufficiently successful to make SNOBOL4
widely available on machines ranging from large mainframes to personal com-
puters (Griswold 1972). Subsequent implementations introduced a variety of
clever techniques and fast, compact implementations (Santos 1971; Gimpel

6 Chapter 1

1972a; Dewar and McCann 1977). The lesson here is that the design of program-
ming languages should not be overly inhibited by perceived implementation
problems, since new implementation techniques often can be devised to solve
such problems effectively and efficiently.

It is worth noting that the original implementation of SNOBOL4 was car-
ried out concomitantly with language design. The implementation was
sufficiently fiexible to serve as a research tool in which experimental language
features could be incorporated easily and tested before they were given a per-
manent place in the language.

Work on the SNOBOL languages continued at the University of Arizona in
the early 1970s. In 1975, a new language, called SLS (‘°SNOBOL Language 5°°),
was developed to allow experimentation with a wider variety of programming-
language constructs, especially a sophisticated procedure mechanism (Griswold
and Hanson 1977; Hanson and Griswold 1978). SL5 extended earlier work in
pattern matching, but pattern matching remained essentially a sublanguage with
its own control structures, separate from the rest of the language.

The inspiration for Icon came in 1976 with a realization that the control
structures that were so useful in pattern matching could be integrated with con-
ventional computational control structures to yield a more coherent and powerful
programming language.

The first implementation of Icon (Griswold and Hanson 1979) was written
in Ratfor, a preprocessor for Fortran that supports structured programming
features (Kernighan 1975). Portability was a central concern in this implementa-
tion. The implementation of Icon described in this book is a successor to that first
implementation. It borrows much from earlier implementations of SNOBOLA4,
SLS, and the Ratfor implementation of Icon. As such, it is a distillation and
refinement of implementation techniques that have been developed over a period
of more than twenty years.

CHAPTER 2

Icon Language Overview

PerSPECTIVE: The implementor of a programming language needs a considerably
different understanding of the language from the persons who are going to use it.
An implementor must have a deep understanding of the relationships that exist
among various aspects of the language and a precise knowledge of what each
operation means. Special cases and details often are of particular importance to
the implementor. Users of a language, on the other hand, must know how to use
features to accomplish desired results. They often can get by with a superficial
knowledge of the language, and they often can use it effectively even if some
aspects of the language are misunderstood. Users can ignore parts of the
language that they do not need. Idiosyncrasies that plague the implementor may
never be encountered by users. Conversely, a detail the implementor overlooks
may bedevil users. Furthermore, the implementor may also need to anticipate
ways in which users may apply some language features in inefficient and inap-
propriate ways.

This is a book about the implementation of Version 6 of Icon. The descrip-
tion that follows concentrates on aspects of the language that are needed to
understand its implementation. Where there are several similar operations or
where the operations are similar to those in well-known programming languages,
only representative cases or highlights are given. A complete description of Icon
for the user is contained in Griswold and Griswold (1983) and Griswold,
Mitchell, and O’Bagy (1986).

Icon is an unusual programming language, and its unusual features are what
make its implementation challenging and interesting. The interesting features are
semantic, not syntactic; they are part of what the language can do, not part of its
appearance. Syntactic matters and the way they are handled in the implementa-
tion are of little interest here. The description that follows indicates syntax
mostly by example.

This chapter is divided into two major parts. The first part describes the
essential aspects of Icon. The second part discusses those aspects of Icon that
present the most difficult implementation problems and that affect the nature of
the implementation in the most significant ways.

8 , Chapter 2

2.1 THE ICON PROGRAMMING LANGUAGE

Icon is conventional in many respects. It is an imperative, procedural language
with variables, operations, functions, and conventional data types. Its novel
aspects lie in its emphasis on the manipulation of strings and structures and in its
expression-evaluation mechanism. While much of the execution of an Icon pro-
gram has an imperative flavor, there also are aspects of logic programming.

There are no type declarations in Icon. Instead, variables can have any type
of value. Structures may be heterogeneous, with different elements having
values of different types. Type checking is performed during program execution,
and automatic type conversion is provided. Several operations are polymorphic,
performing different operations depending on the types of their arguments.

Strings and structures are created during program execution, instead of
being declared and allocated during compilation. Structures have pointer seman-
tics; a structure value is a pointer to an object. Storage management is
automatic. Memory is allocated as required, and garbage collection is performed
when necessary. Except for the practical considerations of computer architecture
and the amount of available memory, there are no limitations on the sizes of
objects.

An Icon program consists of a series of declarations for procedures, records,
and global identifiers. Icon has no block structure. Scoping is static: identifiers
either are global or are local to procedures.

Icon is an expression-based language with a reserved-word syntax. It
resembles C in appearance, for example (Kernighan and Ritchie 1978).

2.1.1 Data Types

Icon has many types of data—including several that are not found in most
programming languages. In addition to the usual integers and real (floating-
point) numbers, there are strings of characters and sets of characters (csets).
There is no character data type, and strings of characters are data objects in their
own right, not arrays of characters.

There are four structure data types that comprise aggregates of values: lists,
sets, tables, and records. Lists provide positional access (like vectors), but they
also can be manipulated like stacks and queues. Sets are unordered collections of
values on which the usual set operations can be performed. Tables can be sub-
scripted with any kind of value and provide an associative-access mechanism.
Records are aggregates of values that can be referenced by name. Record types
also add to the built-in type repertoire of Icon.

The null value serves a special purpose; all variables have the null value ini-
tially. The null value is illegal in most computational contexts, but it serves to

Icon Language Overview 9

indicate default values in a number of situations. The keyword &null produces
the null value.

A source-language file is a data value that provides an interface between the
program and a data file in the environment in which the program executes.

Procedures also are data values—*‘first-class data objects’” in LISP par-
lance. Procedures can be assigned to variables, transmitted to and returned from
functions, and so forth. There is no method for creating procedures during pro-
gram execution, however.

Finally, there is a co-expression data type. Co-expressions are the
expression-level analog of coroutines. The importance of co-expressions is
derived from Icon’s expression-evaluation mechanism.

Icon has various operations on different types of data. Some operations are
polymorphic and accept arguments of different types. For example, type(x) pro-
duces a string corresponding to the type of x. Similarly, copy(x) produces a copy
of x, regardless of its type. Other operations only apply to certain types. An
example is:

*X

which produces the size of x, where the value of x may be a string, a structure,
and so on. Another example is ?x, which produces a randomly selected integer
between 1 and x, if x is an integer, but a randomly selected one-character sub-
string of x if x is a string, and so on. In other cases, different operations for simi-
lar kinds of computations are syntactically distinguished. For example,

i=j
compares the numeric values of i and j, while
s1 == s2

compares the string values of st and s2. There is also a general comparison
operation that determines whether any two objects are the same:

x1 === x2

As mentioned previously, any kind of value can be assigned to any variable.
For example, x might have an integer value at one time and a string value at
another:

X =3

x = "hello”
Type checking is performed during program execution. For example, in
i=x+1

the value of x is checked to be sure that it is numeric. If it is not numeric, an

10 Chapter 2

attempt is made to convert it to a numeric type. If the conversion cannot be per-
formed, program execution is terminated with an error message.

Various conversions are supported. For example, a number always can be
converted to a string. Thus,

write(xs)

automatically converts the integer returned by *s to a string for the purpose of
output.
There also are explicit type-conversion functions. For example,

s1 := string(#s2)

assigns to s1 a string corresponding to the size of s2.
A string can be converted to a number if it has the syntax of a number.
Thus,

=i+ "20"
produces the same result as
i=1+20

Augmented assignments are provided for binary operations such as the pre-
vious one, where assignment is made to the same variable that appears as the left
argument of the operation. Therefore, the previous expression can be written
more concisely as

i +=20

Icon also has the concept of a numeric type, which can be either an integer or a
real (floating-point) number.

2.1.2 Expression Evaluation

In most programming languages—Algol, Pascal, PL/I, and C, for
example—the evaluation of an expression always produces exactly one result. In
Icon, the evaluation of an expression may produce a single result, it may produce
no result at all, or it may produce a sequence of results.

Success and Failure. Conventional operations in Icon produce one result,
as they do in most programming languages. For example,
i+

produces a single result, the sum of the values of i and j. However, a comparison
operation, such as

lcon Language Overview 11

i >
produces a result (the value of j) if the value of i is greater than the value of j but
does not produce a result if the value of i is not greater than j.
An expression that does not produce a result is said to fail, while an expres-
sion that produces a result is said to succeed. Success and failure are used in
several control structures to control program flow. For example,

if i > j then write(i) else write(j)

writes the maximum of i and j. Note that comparison operations do not produce
Boolean values and that Boolean values are not used to drive control structures.
Indeed, Icon has no Boolean type.

Generally speaking, an operation that cannot perform a computation does
not produce a result, and hence it fails. For example, type-conversion functions
fail if the conversion cannot be performed. An example is numeric(x), which
converts X to a numeric value if possible, but fails if the conversion cannot be
performed. Failure of an expression to produce a result does not indicate an
error. Instead, failure indicates that a result does not exist. An example is pro-
vided by the function find(s1,s2), which produces the position of s1 as a sub-
string of s2 but fails if s1 does not occur in s2. For example,

find("it", "They sit like bumps on a log.")
produces the value 7 (positions in strings are counted starting at 1). However,
find("at","They sit like bumps on a log.")

does not produce a result. Similarly, read(f) produces the next line from the file f
but fails when the end of the file is reached.
Failure provides a natural way to control loops. For example,

while line = read(f) do
write(line)

writes the lines from the file f until an end of file causes read to fail, which ter-
minates the loop.
Another use of success and failure is illustrated by the operation

\expr

which fails if expr is null-valued but produces the result of expr otherwise. Since
variables have the null value initially, this operation may be used to determine
whether a value has been assigned to an identifier, as in

if \x then write(x) else write("x is null")

If an expression that is enclosed in another expression does not produce a
result, there is no value for the enclosing expression, it cannot perform a compu-
tation, and it also produces no result. For example, in

12 Chapter 2

write(find("at", "They sit like bumps on a log."))

the evaluation of find fails, there is no argument for write, and no value is written.
Similarly, in

i = find("at","They sit like bumps on a log.")

the assignment is not performed and the value of i is not changed.
This ‘‘inheritance’ of failure allows computations to be expressed con-
cisely. For example,

while write(read(f))

writes the lines from the file f just as the previous loop (the do clause in while-do
is optional). '
The expression

not expr

inverts success and failure. It fails if expr succeeds, but it succeeds, producing the
null value, if expr fails.

Some expressions produce variables, while others only produce values. For
example,

i+
produces a value, while
i =10

produces its left-argument variable. The term result is used to refer to a value or
a variable. The term outcome is used to refer to the consequences of evaluating
an expression—either its result or failure.

Loops. There are several looping control structures in Icon in addition to
while-do. For example,
until expr; do expn
evaluates expr; repeatedly until expr; succeeds. The control structure
repeat expr

simply evaluates expr repeatedly, regardless of whether it succeeds or fails.
A loop itself produces no result if it completes, and hence it fails if used in a
conditional context. That is, when

while expr; do expr

terminates, its outcome is failure. This failure ordinarily goes unnoticed, since
loops usually are not used as arguments of other expressions.

Icon Language Overview 13

The control structure
break expr

causes the immediate termination of the evaluation of the loop in which it
appears, and control is transferred to the point immediately after the loop. The
outcome of the loop in this case is the outcome of expr. If expr is omitted, it
defaults to the null value.

An example of the use of break is:

while line := read(f} do
if line == "end" then break
else write(line)

Evaluation of the loop terminates if read fails or if the file f contains a line con-
sisting of "end".

The expression next causes transfer to the beginning of the loop in which it
occurs. For example,

while line = read(f) do
if line == "comment" then next
else write(line)

does not write the lines of f that consist of "comment".

The break and next expressions can occur only in loops, and they apply to
the innermost loop in which they appear. The argument of break can be a break
or next expression, however, so that, for example,

break break next
breaks out of two levels of loops and transfers control to the beginning of the

loop in which they occur.

Case Expressions. The case expression provides a way of selecting one
of several expressions to evaluate based on the value of a control expression,
rather than its success or failure. The case expression has the form

case expr of {
case clauses

}
The value of expr is used to select one of the case clauses. A case clause has the
form
expr; . expn

where the value of expr is compared to the value of expr;, and expr, is evaluated
if the comparison succeeds. There is also a default case clause, which has the
form

14 Chapter 2

default: exprs

If no other case clause is selected, exprs in the default clause is evaluated. An
example is

case line := read(f) of {

"end" : write("xk% end ##x")
"comment" : write("+** comment skkx")
default : write(line)

}

end

If the evaluation of the control clause fails, as for an end of file in this example,
the entire case expression fails. Otherwise, the outcome of the case expression is
the outcome of evaluating the selected expression.

Generators. As mentioned previously, an expression may produce a
sequence of results. This occurs in situations in which there is more than one
possible result of a computation. An example is

find("e","They sit like bumps on a log.")

in which both 3 and 13 are possible results.

While most programming languages produce only the first result in such a
situation, in Icon the two results are produced one after another if the surround-
ing context requires both of them. Such expressions are called generators to
emphasize their capability of producing more than one result.

There are two contexts in which a generator can produce more than one
result: iteration and goal-directed evaluation.

Iteration is designated by the control structure

every expr; do expr

in which expr; is repeatedly resumed to produce its results. For each such result,
expn is evaluated. For example,

every i = find("e","They sit like bumps on a log.") do
write(i)

writes 3 and 13.

If the argument of an expression is a generator, the results produced by the
generator are provided to the enclosing expression—the sequence of results is
inherited. Consequently, the previous expression can be written more compactly
as

every write(find("e","They sit like bumps on a log."))

Unlike iteration, which resumes a generator repeatedly to produce all its
results, goal-directed evaluation resumes a generator only as necessary, in an

Ilcon Language Overview 15

attempt to cause an enclosing expression to succeed. While iteration is explicit
and occurs only where specified, goal-directed evaluation is implicit and is an
inherent aspect of Icon’s expression-evaluation mechanism.

Goal-directed evaluation is illustrated by

if find("e", "They sit like bumps on a log.") > 10
then write("found")

The first result produced by find is 3, and the comparison operation fails. Because
of goal-directed evaluation, find is automatically resumed to produce another
value. Since this value, 13, is greater than 10, the comparison succeeds, and
found is written. On the other hand, in

if find("e","They sit like bumps on a log.") > 20
then write("found")

the comparison fails for 3 and 13. When find is resumed again, it does not pro-
duce another result, the control clause of if-then fails, and nothing is written.

There are several expressions in Icon that are generators, including string
analysis functions that are similar in nature to find. Another generator is

itojbyk

which generates the integers from i to j by increments of k. If the by clause is
omiitted, the increment defaults to one.

The operation Ix is polymorphic, generating the elements of x for various
types. The meaning of ‘‘element’’ depends on the type of x. If x is a string, !X
generates the one-character substrings of x, so that "hello" generates "h", "e", "I",
"I"_and "o". If x is a file, Ix generates the lines of the file, and so on.

Generative Control Structures. There are several control structures
related to generators, The alternation control structure,
expr; | expn
generates the results of expr; followed by the results of expr. For example,
every write("hello” | "howdy")

writes two lines, hello and howdy.
Since alternation succeeds if either of its arguments succeeds, it can be used
to produce the effect of logical disjunction. An example is

if i>]j)](>Kk) then expr

which evaluates expr if i is greater than j or if is greater than k.
Logical conjunction follows as a natural consequence of goal-directed
evaluation. The operation

16 Chapter 2

expr; & expn

is similar to other binary operations, such as expr; + expr, except that it per-
forms no computation. Instead, it produces the result of expr, provided that
both expr; and expr succeed. For example,

if (i >]j) & (j > k) then expr

evaluates expr only if i is greater than j and j is greater than k.
Repeated alternation,

lexpr
generates the results of expr repeatedly and is roughly equivalent to
expr | expr | expr | ...

However, if expr fails, the repeated alternation control structure stops generating
results. For example,

jread(f)

generates the lines from the file f (one line for each repetition of the alternation)
but stops when read(f) fails.
Note that a generator may be capable of producing an infinite number of

results. For example,

(1 to 3)
can produce 1, 2, 3, 1, 2, 3, 1, 2, 3, However, only as many results as are
required by context are actually produced. Thus,

i=](1to3)

only assigns the value 1 to i, since there is no context to cause the repeated alter-
nation control structure to be resumed for a second result.
The limitation control structure

expr; \ expn
limits expr; to at most expn, results. Consequently,
(1 to3)\5
is only capable of producing 1, 2, 3, 1, 2.
The Order of Evaluation. With the exception of the limitation control
structure, argument evaluation in Icon is strictly left-to-right. The resumption of
expressions to produce additional results is in last-in, first-out order. The result

is ‘‘cross-product’’ generation of results in expressions that contain several gen-
erators. For example,

Icon Language Overview 17

every write((10 to 30 by 10) + (1 to 3))
writes 11, 12, 13, 21, 22, 23, 31, 32, 33.

Control Backtracking. Goal-directed evaluation results in control back-
tracking to obtain additional results from expressions that have previously pro-
duced results, as in

if find("e","They sit like bumps on a log.") > 10
then write("found")

Control backtracking is limited by a number of syntactic constructions. For
example, in

if expr; then expry else expr;

if expr; succeeds, but expn fails, expr; is not resumed for another result. (If it
were, the semantics of this control structure would not correspond to what “‘if-
then-else’’ suggests.) Such an expression is called a bounded expression. The
control clauses of loops also are bounded, as are the expressions within com-
pound expressions:

{ expri; expr; exprs; ..., expr; }

These expressions are evaluated in sequence, but once the evaluation of one is
complete (whether it succeeds or fails), and the evaluation of another begins,
there is no possibility of backtracking into the preceding one. The last expres-
sion in a compound expression is not bounded, however.

Except in such specific situations, expressions are not bounded. For exam-
ple, in

if expr; then expn else expr;

neither exprn nor expr; is bounded. Since Icon control structures are expressions
that may return results, it is possible to write expressions such as

every write(if i > j then j to i else i to j)
which writes the integers from i to j in ascending sequence.
Data Backtracking. While control backtracking is a fundamental part of

expression evaluation in Icon, data backtracking is not performed except in a few
specific operations. For example, in

(i :== 3) & read(f)

the value of 3 is assigned to i. Even if read(f) fails, the former value of i is not
restored.

There are, however, specific operations in which data backtracking is per-
formed. For example, the reversible assignment operation

18 Chapter 2

X <—y

assigns the value of y to x, but it restores the former value of x if control back-
tracking into this expression occurs. Thus,

(i <= 3) & read(f)

assigns 3 to i but restores the previous value of i if read(f) fails.

2.1.3 Csets and Strings

Csets are unordered sets of characters, while strings are sequences of charac-
ters. There are 256 different characters, the first 128 of which are interpreted as
ASCII. The number and interpretation of characters is independent of the archi-
tecture of the computer on which Icon is implemented.

Csets. Csets are represented literally by surrounding their characters by
single quotation marks. For example,

vowels = ‘aeiouAEIOU’

assigns a cset of 10 characters to vowels.

There are several built-in csets that are the values of keywords. These
include &lcase, &ucase, and &cset, which contain the lowercase letters, the
uppercase letters, and all 256 characters, respectively.

Operations on csets include union, intersection, difference, and complement
with respect to &cset. Csets are used in lexical analysis. For example, the func-
tion upto(c, s} is analogous to find(s1,s2), except that it generates the positions at
which any character of ¢ occurs in s. Thus,

upto(vowels, "They sit like bumps on a log.")

is capable of producing 3, 7, 11, 13, 16, 21, 24, and 27.
Strings. Strings are represented literally by surrounding their characters
with double quotation marks instead of single quotation marks. The empty string,

which contains no characters, is given by "". The size of a string is given by *s.
For example, if

command := "Sit stilll"

then the value of xcommand is 10. The value of *"™ is 0. Space for strings is pro-
vided automatically and there is no inherent limit to the size of a string.

There are several operations that construct strings. The principal one is con-
catenation, denoted by

s1 || s2

The function repl(s, i) produces the result of concatenating s i times. Thus,

Icon Language Overview 19

write(repl("+!", 3))

writes * 1],

Other string construction functions include reverse(s), which produces a
string with the characters of s in reverse order, and trim(s, ¢), which produces a
string in which any trailing characters of s that occur in ¢ are omitted. There also
are functions for positioning a string in a field of a fixed width. For example, the
function left(s1,i,s2) produces a string of length i with s1 positioned at the left
and padded with copies of s2 as needed.

Substrings are produced by subscripting a string with the beginning and
ending positions of the desired substring. Positions in strings are between charac-
ters, and the position before the first character of a string is numbered 1. For
example,

verb = command[1:4]

assigns the string "Sit" to verb. Substrings also can be specified by the beginning
position and a length, as in

verb = command[1+:3]

If the length of a substring is 1, only the first position need be given, so that the
value of command|[2] is "i".

Assignment can be made to a subscripted string to produce a new string. For
example,

command|[1:4] := "Remain”

chahges the value of command to "Remain stilll".

String operations are applicative; no operation on a string in Icon changes
the characters in it. The preceding example may appear to contradict this, but in
fact

command{1:4] := "Remain”
is an abbreviation for
command := "Remain” || command([5:11]

Thus, a new string is constructed and then assigned to command.

Nonpositive values can be used to specify a position with respect to the
right end of a string. For example, the value of command{-1] is "!". The value 0
refers to the position after the last character of a string, so that if the value of
command is "Sit stili!",

command][5:0]

is equivalent to

20 Chapter 2

command[5:11]
The subscript positions can be given in either order. Thus,
command[11:5]
produces the same result as
command[5:11]

Sfring-analysis -functions like find and upto have optional third and fourth
arguments that allow their range to be restricted to a particular portion of a string.
For example,

upto(vowels, "They sit like bumps on a log.", 10, 20)

only produces positions of vowels between positions 10 and 20 of its second
argument: 11, 13, and 16. If these arguments are omitted, they default to 1 and
0, so that the entire string is included in the analysis.

Mapping. One of the more interesting string-valued functions in Icon is
map(s1,s2,s3). This function produces a string obtained from a character substi-
tution on s1. Each character of s1 that occurs in s2 is replaced by the correspond-
ing character in s3. For example,

write(map("Remain stilll", "aeiou"”, "s##x+"))

writes Rxm=*#n St+lll. Characters in s1 that do not appear in s2 are unchanged, as
this example shows. If a character occurs more than once in s2, its right-
most correspondence in s3 applies. Consequently,

s2 = &lcase || &ucase || "aeiou”
s3 := repl("l",26) || repl("u",26) || "sswrx"
write(map("Remain stilll", s2, s3))

writes uklxx] Hx]l!,

2.1.4 String Scanning

String scanning is a high-level facility for string analysis that suppresses the
computational details associated with the explicit location of positions and sub-
string specifications. In string scanning, a subject serves as a focus of attention.
A position in this subject is maintained automatically.

A string-scanning expression has the form

expr; 7 expn

lcon Language Overview 21

in which the evaluation of expr; provides the subject. The position in the subject
is 1 initially. The expression expr is then evaluated in the context of this subject
and position.

Although expr; can contain any operation, two matching functions are useful
in analyzing the subject:

tab(i) set the position in the subject to i
move(i) increment the position in the subject by i

Both of these functions return the substring of the subject between the old and
new positions. If the position is out of the range of the subject, the matching
function fails and the position is not changed. The position can be increased or
decreased. Nonpositive values can be used to refer to positions relative to the end
of the subject. Thus, tab(0) moves the position to the end of the subject, matching
the remainder of the subject.

An example of string scanning is

line ? while write(move(2))

which writes successive two-character substrings of line, stopping when there are
not two characters remaining.

In string scanning, the trailing arguments of string analysis functions such as
find and upto are omitted; the functions apply to the subject at the current posi-
tion. Therefore, such functions can be used to provide arguments for matching
functions. An example is

line ? write(tab(find("::=")))

which writes the initial portion of line up to an occurrence of the string "::=".

If a matching function is resumed, it restores the position in the subject to
the value that it had before the matching function was evaluated. For example,
suppose that line contains the substring "::=". Then

line ? ((tab(find("::=") + 3)) & write(move(10)) | write(tab(0)))

writes the 10 characters after "::=", provided there are 10 more characters. How-
ever, if there are not 10 characters remaining, move(10) fails and tab(find("::=")) is
resumed. It restores the position to the beginning of the subject, and the alterna-
tive, tab(0), matches the entire subject, which is written.

Data backtracking of the position in the subject is important, since it allows
matches to be performed with the assurance that any previous alternatives that
failed to match left the position where it was before they were evaluated.

The subject and position are directly accessible as the values of the key-
words &subject and &pos, respectively. For example,

&subject := "Hello"

assigns the string "Hello" to the subject. Whenever a value is assigned to the sub-
ject, &pos is set to 1 automatically.

22 Chapter 2

The values of &subject and &pos are saved at the beginning of a string-
scanning expression and are restored when it completes. Consequently, scanning
expressions can be nested.

2.1.5 Lists

A list is a linear aggregate of values (‘‘elements’’). For example,
cities := ['Portland", "Toledo", "Tampa"]
assigns a list of three strings to cities. Lists can be heterogeneous, as in
language = ["lcon", 1978,"The University of Arizona"]
An empty list, containing no elements, is produced by []. The function
list(i, x)

produces a list of i elements, each of which has the value of x. The size operation
*x also applies to lists. The value of *cities is 3, for example.

An element of a list is referenced by a subscripting expression that has the
same form as the one for strings. For example,

cities[3] = "Miami"
changes the value of cities to
["Portland”, "Toledo", "Miami"}

The function sort(a) produces a sorted copy of a. For example, sort(cities)
produces

["Miami", "Portland", "Toledo"]

List operations, unlike string operations, are not applicative. While assign-
ment to a substring is an abbreviation for concatenation, assignment to a sub-
scripted list changes the value of the subscripted element.

A list value is a pointer to a structure that contains the elements of the list.
Assignment of a list value copies this pointer, but it does not copy the structure.
Consequently, in

states = ["Nevada","Texas", "Maine", "Georgia"]
slist := states

both states and slist point to the same structure. Because of this,
states[2] := "Arkansas”

changes the second element of slist as well as the second element of states.
The elements of a list may be of any type, including lists, as in

Icon Language Overview 23

tree = ["a", ["b", ["c"],["d"]]]

which can be depicted as

Structures also can be used to represent loops, as in

graph := [liaﬂ’ ll"]
graph[2] := graph

which can be depicted as

o]

Lists are not fixed in size. Elements can be added to them or removed from
them at their ends by queue and stack functions.

The function put(a,x) adds the value of x to the right end of the list a,
increasing its size by one. Similarly, push(a, x) adds the value of x to the left end
of a. For example,

lines := []
while put(lines, read(f))

constructs a list of the lines from the file f. Conversely,

lines := []
while push(lines, read(f))

constructs a list of lines in reverse order.

The functions pop(a) and get(a) are the same. They both remove an element
from the left end of a and return it as the value of the function call, but they fail if
a is empty. Consequently,

24 Chapter 2

lines := []
while push(lines, read(f))
while write(pop(lines))

writes out the lines of f in reverse order. The function pull(a) is similar, but it
removes an element from the right end of a.
Other operations on lists include concatenation, which is denoted by

a1 ||| a2

where a1 and a2 are lists. There is no automatic conversion of other types to lists.
List sectioning is denoted by

afizj]

The result is a new list containing values i through j of a.
There is no inherent limit to the size of a list, either when it is originally
created or as a result of adding elements to it.

2.1.6 Sets

A set is an unordered collection of values. Unlike csets, which contain only
characters, sets are collections of Icon values that can be of any type. A set is
constructed from a list by set(a). For example,

states := set(["Virginia", "Rhode Island", "Kansas", "lllinois"])

assigns a set of four elements to states.
The operation

member(s, x)

succeeds if the value of x is a member of s but fails otherwise. The operation
insert(s, x)

adds the value of x to s if it is not already a member of s, while
delete(s, x)

deletes the value of x from s. The operations of union, intersection, and differ-
ence for sets also are provided.

Like other structures, sets can be heterogeneous. A set can even be a
member of itself, as in

insert(s, s)

There is no contradiction here, since a set value is a pointer to the structure for
the set.

Ilcon Language Overview 25

2.1.7 Tables

A table is a set of pairs of values. Tables provide an associative lookup
mechanism as contrasted with positional references to lists. They can be sub-
scripted with an entry value to which a value can be assigned to make up a pair,
called a table element.

A table is created by

table(x)

Tables are empty initially. The value of x is an assigned default value that is pro-
duced if the table is subscripted with an entry value to which no value has been
assigned (that is, for an element that is not in the table). For example,

states := table(0)

assigns to states a table with a default value of 0. An element can be added to
states by an assignment such as

states["Oregon"] := 1
which adds a table element for "Oregon” with the value 1 to states. On the other
hand,

write(states["Utah"])

writes 0, the default value, if there is no element in the table for "Utah".

Tables can be heterogencous and have a mixture of types for entry and
assigned values. Tables grow automatically in size as new elements are added
and there is no inherent limit on the size of a table.

2.1.8 Records

A record is an aggregate of values that is referenced by named fields. Each
record type has a separate name. A record type and the names of its fields are
given in a declaration. For example,

record rational(numerator, denominator)

declares a record of type rational with two fields: numerator and denominator.
An instance of a record is created by calling a record-constructor function
corresponding to the form of the declaration for the record type. Thus,

r = rational(3, 5)

assigns to r a record of type rational with a numerator field of 3 and a denomina-
tor field of 5. Fields are referenced by name, as in

26 Chapter 2

write(r.numerator)

which writes 3. Fields can also be referred to by position; r[1] is equivalent to
r.numerator.

There is no inherent limit to the number of different record types. The same
field names can be given for different record types, and such fields need not be in
the same position for all such record types.

2.1.9 Input and Output

Input and output in Icon are sequential and comparatively simple. The stan-
dard input, standard output, and standard error output files are the values of
&input, &output, and &errout, respectively. The function

open(s1,s2)

opens the file whose name is s1 according to options given by s2 and produces a
value of type file. Typical options are "r" for opening for reading and "w" for
opening for writing. The default is "r". For example,

log := open("grade.log", "w")

assigns a value of type file to log, corresponding to the data file grade.log, which
is opened for writing. The function open fails if the specified file cannot be
opened according to the options given. The function close(f) closes the file f.

The function read(f) reads a line from the file f but fails if an end of file is
encountered. The default is standard input if f is omitted.

The result of

write(x1,x2, ..., xn)

depends on the types of x1, x2, ..., xn. Strings and types convertible to strings
are written, but if one of the arguments is a file, subsequent strings are written to
that file. The default file is standard output. Thus,

write(s1, s2)
writes the concatenation of s1 and s2 to standard output, but
write(log, s)

writes s to the file grade.log. In any event, write returns the string value of the
last argument written.
The function

stop(x1,x2, ..., xn)

produces the same output as write, but it then terminates program execution.

lcon Language Overview 27

2.1.10 Procedures

Procedure Declarations. The executable portions of an Icon program are
contained in procedure declarations. Program execution begins with a call of the
procedure main.

An example of a procedure declaration is:

procedure maxstr(slist)
local max, value
max = 0
every value := xlslist do
if value > max then max := value
return max
end

This procedure computes the longest string in a list of strings. The formal
parameter slist and the identifiers max and value are local to calls of the pro-
cedure maxstr. Storage for them is allocated when maxstr is called and deallo-
cated when maxstr returns.

A procedure call has the same form as a function call. For example,

lines := (]
while put(lines, read(f))
write(maxstr(lines))

writes the length of the longest line in the file f.

A procedure call may fail to produce a result in the same way that a built-in
operation can fail. This is indicated by fail in the procedure body in place of
return. For example, the following procedure returns the length of the longest
string in slist but fails if that length is less than fimit:

procedure maxstr(slist, limit)
local max, value
max = 0
every value := xlglist do
if value > max then max := value
if max < limit then fail else return max
end

Flowing off the end of a procedure body without an explicit return is equivalent
to fail.

A procedure declaration may have static identifiers that are known only to
calls of that procedure but whose values are not destroyed when a call returns. A
procedure declaration also may have an initial clause whose expression is

28 Chapter 2

evaluated only the first time the procedure is called. The use of a static identifier
and an initial clause is illustrated by the following procedure, which returns the
longest of all the strings in the lists it has processed:

procedure maxstrall(slist)
local value
static max
initial max = 0
every value := xlslist do
if value > max then max := value
return max
end

Procedures and Functions. Procedures and functions are used in the
same way. Their names have global scope. Other identifiers can be declared to
have global scope, as in

global count

Such global declarations are on a par with procedure declarations and cannot
occur within procedure declarations.
A call such as

write(maxstr(lines))

applies the value of the identifier maxstr to lines and applies the value of the
identifier write to the result. There is nothing fixed about the values of such
identifiers. In this case, the initial value of maxstr is a procedure, as a conse-
quence of the procedure declaration for it. Similarly, the initial value of write is a
function. These values can be assigned to other variables, as in .

print = write

print(maxstr(lines))

in which the function that is the initial value of write is assigned to print.
Similarly, nothing prevents an assignment to an identifier whose initial
value is a procedure. Consequently,
write = 3

assigns an integer to write, replacing its initial function value.

Although it is typical to call a procedure by using an identifier that has the
procedure value, the procedure used in a call can be computed. The general form
of acall is

exprplexpry, expr, ..., expr,)

where the value of expr is applied to the arguments resulting from the evaluation

Icon Language Overview 29

of expry, expn, ..., expr,. For example,
(proclist[il)(expr, expn, ..., exph)

applies the procedure that is the ith element of proclist.

Procedures may be called recursively. The recursive nature of a call depends
on the fact that procedure names are global. The ‘‘Fibonacci strings’’ provide an
example:

procedure fibstr(i)

if i = 1 then return "a"

else if i = 2 then return "b"

else return fibstr(i — 1) || fibstr(i — 2)
end

An identifier that is not declared in a procedure and is not global defaults to
local. Thus, local declarations can be omitted, as in

procedure maxstr(slist)
max = 0
every value := *lslist do
if value > max then max := value
return max
end

Procedures as Generators. In addition to returning and failing, a pro-
cedure can also suspend. In this case, the values of its arguments and local
identifiers are not destroyed, and the call can be resumed to produce another
result in the same way a built-in generator can be resumed. An example of such a
generator is

procedure intseq(i)

repeat {
suspend i
i +:=1
}
end

A call intseq(10), for example, is capable of generating the infinite sequence of
integers 10, 11, 12, For example,

every f(intseq(10) \ 5)

calls f(10), f(11), f(12), f(13), and f(14).

If the argument of suspend is a generator, the generator is resumed when
the call is resumed and the call suspends again with the result it produces. A gen-
erator of the Fibonacci strings provides an example:

30 Chapter 2

procedure fibstrseq()

local s1, s2, s3

st = "a"

s2 = "b"

suspend (s1 | s2)

repeat {
suspend s3 := s1 || s2
sl =82
s2 = s3
}

end

When this procedure is called, the first suspend expression produces the value of
s1, "a". If the call of fibstrseq is resumed, the argument of suspend is resumed
and produces the value of s2, "b". If the call is resumed again, there is no further
result for the first suspend, and evaluation continues to the repeat loop.

Repeated alternation often is useful in supplying an endless number of alter-
natives. For example, the procedure intseq(i) can be rewritten as

procedure intseq(i)
suspend i | (i +:= |1)
end

Note that |1 is used to provide an endless sequence of increments.

Argument Transmission. Omitted arguments in a procedure or function
call (including trailing ones) default to the null value. Extra arguments are
evaluated, but their values are discarded.

Some functions, such as write, may be called with an arbitrary number of
arguments. All arguments to procedures and functions are passed by value. If
the evaluation of an argument expression fails, the procedure or function is not
called. This applies to extra arguments. Arguments are not dereferenced until all
of them have been evaluated. Dereferencing cannot fail. Since no argument is
dereferenced until all argument expressions are evaluated, expressions with side
effects can produce unexpected results. Thus, in

write(s, s = "hello")

the value written is hellohello, regardless of the value of s before the evaluation
of the second argument of write.

Dereferencing in Return Expressions. The result returned from a pro-
cedure call is dereferenced unless it is a global identifier, a static identifier, a sub-
scripted structure, or a subscripted string-valued global identifier.

In these exceptional cases, the variable is returned and assignment can be
made to the procedure call. An example is

lcon Language Overview 31

procedure maxel(a, i,])
if i > j then return afi]
else return al[j]

end

Here a list element, depending on the values of i and j, is returned. An assignment
can be made to it, as in

maxel(lines, i,j) = "end"

which assigns "end" to lines[i] or lines[j], depending on the values of i and j.

Mutual Evaluation. In a call expression, the value of expm can be an
integer i as well as a procedure. In this case, called mutual evaluation, the result
of the ith argument is produced. For example,

i = 1(find(s1, line1), find(s2, line2))

assigns to i the position of s1 in line1, provided s1 occurs in line1 and that s2
occurs in line2. If either call of find fails, the expression fails and no assignment
is made.

The selection integer in mutual evaluation can be negative, in which case it
is interpreted relative to the end of the argument list. Consequently,

(=1)(expri, expn, ..., expr)
produces the result of expr, and is equivalent to
expr; & expn & ... & exph,

The selection integer can be omitted, in which case it defaults to —1.

2.1.11 Co-Expressions

The evaluation of an expression in Icon is limited to the site in the program
where it appears. Its results can be produced only at that site as a result of itera-
tion or goal-directed evaluation. For example, the results generated by intseq(i)
described in Sec. 2.1.10 can only be produced where it is called, as in

every f(intseq(10) \ 5)

It is often useful, however, to be able to produce the results of a generator at
various places in the program as the need for them arises. Co-expressions provide
this facility by giving a context for the evaluation of an expression that is main-
tained in a data structure. Co-expressions can be activated to produce the results
of a generator on demand, at any time and place in the program.

A co-expression is constructed by

32 Chapter 2

create expr

The expression expr is not evaluated at this time. Instead, an object is produced
through which expr can be resumed at a later time. For example,

label = create ("L" || (1 to 100) || ")
assigns to label a co-expression for the expression
"L" |} (1 to 100) || "

The operation @label activates this co-expression, which corresponds to resum-
ing its expression. For example,

write(@label)
write(" tstl count”)
write(@label)

writes

L1:
tstl count
L2:

If the resumption of the expression in a co-expression does not produce a
result, the co-expression activation fails. For example, after @label has been
evaluated 100 times, subsequent evaluations of @label fail. The number of
results that a co-expression e has produced is given by *e.

The general form of the activation expression is

expr; @ expn

which activates expry and transmits the result of expr to it. This form of activa-
tion can be used to return a result to the co-expression that activated the current
one.

A co-expression is a value like any other value in Icon and can be passed as
an argument to a procedure, returned from a procedure, and so forth. A co-
expression can survive the call of the procedure in which it is created.

If the argument of a create expression contains identifiers that are local to
the procedure in which the create occurs, copies of these local identifiers are
included in the co-expression with the values they have at the time the create
expression is evaluated. These copied identifiers subsequently are independent of
the local identifiers in the procedure. Consider, for example,

lcon Language Overview 33

procedure labgen(tag)

local i, j
i=10
j =20

e = create (tag || (i to j) || "")

i=]
if i > 15 then return e

end

The expression
labels := labgen("X")

assigns to labels a co-expression that is equivalent to evaluating
create ("X" || (10 to 20) || ™")

The fact that i is changed after the co-expression was assigned to e, but before e
returns, does not affect the co-expression, since it contains copies of i and j at the
time it was created. Subsequent changes to the values of i or j do not affect the
co-expression.

A copy of a co-expression e is produced by the refresh operation, "e. When
a refreshed copy of a co-expression is made, its expression is reset to its initial
state, and the values of any local identifiers in it are reset to the values they had
when the co-expression was created. For example,

newlabels = "labels

assigns to newlabels a co-expression that is capable of producing the same results
as labels, regardless of whether or not labels has been activated.

The value of the keyword &main is the co-expression for the call of main
that initiates program execution.

2.1.12 Diagnostic Facilities

String Images. The function type(x) only produces the string name of the
type of x, but the function image(x) produces a string that shows the value of x.
For strings and csets, the value is shown with surrounding quotation marks in the
fashion of program literals. For example,

34 Chapter 2

write(image("Hi there!"))
writes "Hi there!", while
write(image("aeiou’))

writes ‘aeiou’.
For structures, the type name and size are given. For example,

write(image([]))

writes list(0).
Various forms are used for other types of data, using type names where
necessary so that different types of values are distinguishable.

Tracing. If the value of the keyword &trace is nonzero, a trace message is
produced whenever a procedure is called, returns, fails, suspends, or is resumed.
Trace messages are written to standard error output. The value of &trace is decre-
mented for every trace message. Tracing stops if the value of &trace becomes
zero, which is its initial value. Suppose that the following program is contained
in the file fibstr.icn:

procedure main()
&trace = -1
fibstr(3)

end

procedure fibstr(i)

if i = 1 then return "a"

else if i = 2 then return "b"

else return fibstr(i — 1) || fibstr(i — 2)
end

The trace output of this program is

fibstr.icn: 3 | fibstr(3)

fibstr.icn: 9 | | fibstr(2)

fibstr.icn: 8 | | fibstr returned "b"
fibstr.icn: 9 | | fibstr(1)

fibstr.icn: 7 | | fibstr returned "a"
fibstr.icn: 9 | fibstr returned "ba"
fibstr.icn: 4 main failed

In addition to the indentation corresponding to the level of procedure call, the
value of the keyword &level also is the current level of call.

Displaying Identifier Values. The function display(i, f) writes a list of all
identifiers and their values for i levels of procedure calls, starting at the current
level. If i is omitted, the default is &level, while if f is omitted, the list is written

icon Language Overview 35

to standard error output. The format of the listing produced by display is illus-
trated by the following program:

procedure main()
log = open("grade.log", "w")
while write(log, check(read()))
end

procedure check(value)

static count

initial count := 0

if numeric(value) then {
count +:= 1
return value
}

else {
display()
stop("nonnumeric value")

}

end

Suppose that the tenth line of input is the nonnumeric string "3.a". Then the out-
put of display is

check local identifiers:
value = “3.a"
count = 9
main local identifiers:
log = file(grade.log)
global identifiers:
main = procedure main
check = procedure check
open = function open
write = function write
read = function read
numeric = function numeric
display = function display
stop = function stop

Error Messages. If an error is encountered during program execution, a
message is written to standard error output and execution is terminated. For
example, if the tenth line of a program contained in the file check.icn is

i +="x"

evaluation of this expression produces the error message

36 Chapter 2

Run-time error 102 at line 10 in check.icn
numeric expected
offending value: "x"

2.2 LANGUAGE FEATURES AND THE IMPLEMENTATION

Even a cursory consideration of Icon reveals that some of its features present
implementation problems and require approaches that are different from ones
used in more conventional languages. In the case of a language of the size and
complexity of Icon, it is important to place different aspects of the implementa-
tion in perspective and to identify specific problems.

Values and Variables. The absence of type declarations in Icon has far-
reaching implications. Since any variable may have a value of any type and the
type may change from time to time during program execution, there must be a
way of representing values uniformly. This is a significant challenge in a
language with a wide variety of types ranging from integers to co-expressions.
Heterogeneous structures follow as a natural consequence of the lack of type
declarations.

In one sense, the absence of type declarations simplifies the implementation:
there is not much that can be done about types during program translation (com-
pilation), and some of the work that is normally performed by conventional com-
pilers can be avoided. The problems do not go away, however-—they just move
to another part of the implementation, since run-time type checking is required.
Automatic type conversion according to context goes hand-in-hand with type
checking.

Storage Management. Since strings and structures are created during pro-
gram execution, rather than being declared, the space for them must be allocated
as needed at run time. This implies, in turn, some mechanism for reclaiming
space that has been allocated but which is no longer needed— ‘‘garbage collec-
tion.”” These issues are complicated by the diversity of types and sizes of objects,
the lack of any inherent size limitations, and the possibility of pointer loops in
circular structures.

Strings. Independent of storage-management considerations, strings
require special attention in the implementation. The emphasis of Icon is on string
processing, and it is necessary to be able to process large amounts of string data
efficiently. Strings may be very long and many operations produce substrings of
other strings. The repertoire of string analysis and string synthesis functions is
large. All this adds up to the need for a well-designed and coherent mechanism
for handling strings.

lcon Language Overview 37

Structures. Icon’s unusual structures, with sophisticated access mechan-
isms, also pose problems. In particular, structures that can change in size and can
grow without limit require different implementation approaches than static struc-
tures of fixed size and organization.

The flexibility of positional, stack, and queue access mechanisms for lists
requires compromises to balance efficient access for different uses. Sets of
values with arbitrary types, combined with a range of set operations, pose non-
trivial implementation problems. Tables are similar to sets, but require additional
attention because of the implicit way that elements are added.

Procedures and Functions. Since procedures and functions are values,
they must be represented as data objects. More significantly, the meaning of a
function call cannot, in general, be determined when a program is translated. The
expression write(s) may write a string or it may do something else, depending on
whether or not write still has its initial value. Such meanings must, instead, be
determined at run time.

Polymorphic Operations. Although the meanings of operations cannot be
changed during program execution in the way that the meanings of calls can,
several operations perform different computations depending on the types of
their operands. Thus, x[i] may subscript a string, a list, or a table.

The meanings of some operations also depend on whether they occur in an
assignment or a dereferencing context. For example, if s has a string value,
assignment to sfi] is an abbreviation for a concatenation followed by an assign-
ment to s, while if s[i] occurs in a context where its value is needed, it is simply a
substring operation. Moreover, the context cannot, in general, be determined at
translation time.

The way subscripting operations are specified in Icon offers considerable
convenience to the programmer at the expense of considerable problems for the
implementor.

Expression Evaluation. Generators and goal-directed evaluation present
obvious implementation problems. There is a large body of knowledge about the
implementation of expression evaluation for conventional languages in which
expressions always produce a single result, but there is comparatively little
knowledge about implementing expressions that produce results in sequence.

While there are languages in which expressions can produce more than one
result, this capability is limited to specific contexts, such as pattern matching, or
to specific control structures or data objects.

In Icon, generators and goal-directed evaluation are general and pervasive
and apply to all evaluation contexts and to all types of data. Consequently, their
implementation requires a fresh approach. The mechanism also has to handle the
use of failure to drive control structures and must support novel control

38 Chapter 2

structures, such as alternation and limitation. Efficiency is a serious concermn,
since whatever mechanism is used to implement generators is also used in con-
ventional computational situations in which only one result is needed.

String Scanning. String scanning is comparatively simple. The subject
and position— *‘state variables’’~—have to be saved at the beginning of string
scanning and restored when it is completed. Actual string analysis and matching
follow trivially from generators and goal-directed evaluation.

Co-Expressions. Co-expressions, which are only relevant because of the
expression-evaluation mechanism of Icon, introduce a whole new set of com-
plexities. Without co-expressions, the results that a generator can produce are
limited to its site in the program. Control backtracking is limited syntactically,
and its scope can be determined during program translation. With co-
expressions, a generator in a state of suspension can be activated at any place and
time during program execution.

RETROSPECTIVE: Icon has a number of unusual features that are designed to facili-
tate programming, and it has an extensive repertoire of string and structure opera-
tions. One of Icon’s notable characteristics is the freedom from translation-time
constraints and the ability to specify and change the meanings of operations at
run time. This run-time flexibility is valuable to the programmer, but it places
substantial burdens on the implementation—and also makes it interesting.

At the top level, there is the question of how actually to carry out some of
the more sophisticated operations. Then there are questions of efficiency, both in
execution speed and storage utilization. There are endless possibilities for alter-
native approaches and refinements.

It is worth noting that many aspects of the implementation are relatively
independent of each other and can be approached separately. Operations on
strings and structures are largely disjoint and can, except for general considera-
tions of the representation of values and storage management, be treated as
independent problems.

The independence of expression evaluation from other implementation con-
siderations is even clearer. Without generators and goal-directed evaluation, Icon
would be a fairly conventional high-level string and structure processing
language, albeit one with interesting implementation problems. On the other
hand, generators and goal-directed evaluation are not dependent in any
significant way on string and structure data types. Generators, goal-directed
evaluation, and related control structures could just as well be incorporated in a
programming language emphasizing numerical computation. The implementa-
tion problems related to expression evaluation in the two contexts are largely the
same.

While untyped variables and automatic storage management have pervasive
effects on the overall implementation of Icon, there are several aspects of Icon

lcon Language Overview 39

that are separable from the rest of the language and its implementation. Any
specific data structure, string scanning, or co-expressions could be eliminated
from the language without significantly affecting the rest of the implementation.
Similarly, new data structures and new access mechanisms could be added
without requiring significant modifications to the balance of the implementation.

EXERCISES

2.1 What is the outcome of the following expression if the file f contains a line
consisting of "end", or if it does not?

while line := read(f) do
if line == "end" then break
else write(line)
2.2 What does
write("helio” | "howdy")
write?
2.3 What is the result of evaluating the following expression?

(1 to 3) > 10

2.4 Explain the rationale for the dereferencing of variables when a procedure call
returns.

2.5 Give an example of a situation in which it cannot be determined until run
time whether a string subscripting expression is used in an assignment or a
dereferencing context.

CHAPTER 3

Organization of the Implementation

PERSPECTIVE: Many factors influence the implementation of a programming
language. The properties of the language itself, of course, are of paramount
importance. Beyond this, goals, resources, and many other factors may affect the
nature of an implementation in significant and subtle ways.

In the case of the implementation of Icon described here, several unusual
factors deserve mention. To begin with, Icon’s origins were in a research project,
and its implementation was designed not only to make the language available for
use but also to support further language development. The language itself was
less well defined and more subject to modification than is usually the case with
an implementation. Therefore, flexibility and ease of modification were impor-
tant implementation goals.

Although the implementation was not a commercial enterprise, neither was
it a toy or a system intended only for a few *‘friendly users.”” It was designed to
be complete, robust, easy to maintain, and sufficiently efficient to be useful for
real applications in its problem domain.

Experience with earlier implementations of SNOBOLA4, SL5, and the Ratfor
implementation of Icon also influenced the implementation that is described here.
They provided a repertoire of proven techniques and a philosophy of approach to
the implementation of a programming language that has novel features.

The computing environment also played a major role. The implementation
started on a PDP-11/70 running under UNIX. The UNIX environment (Ritchie
and Thompson 1978), with its extensive range of tools for program development,
influenced several aspects of the implementation in a direct way. C (Kernighan
and Ritchie 1978) is the natural language for writing such an implementation
under UNIX, and its use for the majority of Icon had pervasive effects, which are
described throughout this book. Tools, such as the Yacc parser-generator (John-
son 1975), influenced the approach to the translation portion of the implementa-
tion.

Since the initial work was done on a PDP-11/70, with a user address space
of only 128K bytes (combined instruction and data spaces), the size of the imple-
mentation was a significant concern. In particular, while the Ratfor implementa-
tion of Icon fit comfortably on computers with large address spaces, such as the
DEC-10, CDC Cyber, and IBM 370, this implementation was much too large to
fit on a PDP-11/70.

Organization of the Implementation 41

3.1 THE ICON VIRTUAL MACHINE

The implementation of Icon is organized around a virtual machine (Newey,
Poole, and Waite 1972; Griswold 1977). Virtual machines, sometimes called
abstract machines, serve as software design tools for implementations in which
the operations of a language do not fit a particular computer architecture or when
portability is a consideration and the attributes of several real computer architec-
tures can be abstracted in a single common model. The expectation for most vir-
tual machine models is that a translation will be performed to map the virtual
machine operations onto a specific real machine. A virtual machine also pro-
vides a basis for developing an operational definition of a programming language
in which details can be worked out in concrete terms.

During the design and development phases of an implementation, a virtual
machine serves as an idealized model that is free of the details and idiosyncrasies
of any real machine. The virtual machine can be designed in such a way that
treatment of specific, machine-dependent details can be deferred until it is neces-
sary to translate the implementation of the virtual machine to a real one.

Icon’s virtual machine only goes so far. Unlike the SNOBOL4 virtual
machine (Griswold 1972), it is incomplete and characterizes only the
expression-evaluation mechanism of Icon and computations on Icon data. It does
not, per se, include a model for the organization of memory. There are many
aspects of the Icon run-time system, such as type checking, storage allocation,
and garbage collection, that are not represented in the virtual machine. Instead,
Icon’s virtual machine serves more as a guide and a tool for organizing the
implementation than it does as a rigid structure that dominates the implementa-
tion.

3.2 COMPONENTS OF THE IMPLEMENTATION

There are three major components of the implementation of Icon: a translator, a
linker, and a run-time system.

The translator plays the role of a compiler for the Icon virtual machine. It
analyzes source programs and converts them to virtual machine instructions. The
output of the translator is called ucode. Ucode is represented as ASCII text,
which is helpful in debugging the implementation.

The linker combines one or more ucode files into a single program for the
virtual machine. This allows programs to be written and translated in a number of
modules, and it is particularly useful for giving users access to pretranslated
libraries of Icon procedures. The output of the linker, called icode, is in binary
format for compactness and ease of processing by the virtual machine. Ucode
and icode instructions are essentially the same, differing mainly in their format.

42 Chapter 3

Translating and linking are done in two phases:

Icon program — | translator | — ucode — | linker | — icode

These phases can be performed separately. If only the first phase is performed,
the result is ucode, which can be saved and linked at another time.

The run-time system consists of an interpreter for icode and a library of sup-
port routines to carry out the various operations that may occur when an Icon
program is executed. The interpreter serves, conceptually, as a software realiza-
tion of the Icon virtual machine. It decodes icode instructions and their operands
and carries out the corresponding operations.

It is worth noting that the organization of the Icon system does not depend
in any essential way on the use of an interpreter. In fact, in the early versions of
this implementation, the linker produced assembly-language code for the target
machine. That code then was assembled and loaded with the run-time library.
On the surface, the generation of machine code for a specific target machine
rather than for a virtual machine corresponds to the conventional compilation
approach. However, this is somewhat of an illusion, since the machine code con-
sists largely of calls to run-time library routines corresponding to virtual machine
instructions. Execution of machine code in such an implementation therefore
differs only slightly from interpretation, in which instruction decoding is done in
software rather than in hardware. The difference in speed in the case of Icon is
relatively minor.

An interpreter offers a number of advantages over the generation of machine
code that offset the small loss of efficiency. The main advantage is that the inter-
preter gets into execution very quickly, since it does not require a loading phase
to resolve assembly-language references to library routines. Icode files also are
much smaller than the executable binary files produced by a loader, since the
run-time library does not need to be included in them. Instead, only one sharable
copy of the run-time system needs to be resident in memory when Icon is execut-

ing.

3.3 THE TRANSLATOR

The translator that produces ucode is relatively conventional. It is written
entirely in C and is independent of the architecture of the target machine on
which Icon runs. Ucode is portable from one target machine to another.

The translator consists of a lexical analyzer, a parser, a code generator, and a
few support routines. The lexical analyzer converts a source-language program
into a stream of tokens that are provided to the parser as they are needed. The
parser generates abstract syntax trees on a per-procedure basis. These abstract
syntax trees are in turn processed by the code generator to produce ucode. The

Organization of the Implementation 43

parser is generated automatically by Yacc from a grammatical specification.
Since the translator is relatively conventional and the techniques that it uses are
described in detail elsewhere (Aho, Sethi, and Ullman 1985), it is not discussed
here.

There is one aspect of lexical analysis that deserves mention. The body of
an Icon procedure consists of a series of expressions that are separated by semi-
colons. However, these semicolons usually do not need to be provided explicitly,
as illustrated by examples in Chapter 2. Instead, the lexical analyzer performs
semicolon insertion. If a line of a program ends with a token that is legal for
ending an expression, and if the next line begins with a token that is legal for
beginning an expression, the lexical analyzer generates a semicolon token
between the lines. For example, the two lines

i=j+3

write(i)
are equivalent to

i=j+3

write(i)
since an integer literal is legal at the end of an expression and an identifier is
legal at the beginning of an expression.

If an expression spans two lines, the place to divide it is at a token that is not
legal at the end of a line. For example,

st =82 ||
s3

is equivalent to
sl :=s2 || s3

No semicolon is inserted, since || is not legal at the end of an expression.

3.4 THE LINKER

The linker reads ucode files and writes icode files. An icode file consists of an
executable header that loads the run-time system, descriptive information about
the file, operation codes and operands, and data specific to the program. The
linker, like the translator, is written entirely in C. While conversion of ucode to
icode is largely a matter of reformatting, the linker performs two other functions.

44 Chapter 3

3.4.1 Scope Resolution

The scope of an undeclared identifier in a procedure depends on global
declarations (explicit or implicit) in the program in which the procedure occurs.
Since the translator in general operates on only one module of a program, it can-
not resolve the scope of undeclared identifiers, because not all global scope infor-
mation is contained in any one module. The linker, on the other hand, processes
all the modules of a program, and hence it has the task of resolving the scope of
undeclared identifiers.

An identifier may be global for several reasons:

e As the result of an explicit global declaration.

e As the name in a record declaration.

e As the name in a procedure declaration.

e As the name of a built-in function.

If an identifier with no local declaration falls into one of these categories, it
is global. Otherwise it is local.

3.4.2 Construction of Run-Time Structures

A number of aspects of a source-language Icon program are represented at
run time by various data structures. These structures are described in detail in
subsequent chapters. They include procedure blocks, strings, and blocks for cset
and real literals that appear in the program.

This data is represented in ucode in a machine-independent fashion. The
linker converts this information into binary images that are dependent on the
architecture of the target computer.

3.5 THE RUN-TIME SYSTEM

Most of the interesting aspects of the implementation of Icon reside in its run-
time system. This run-time system is written mostly in C, although there are a
few lines of assembly-language code for checking for arithmetic overflow and for
co-expressions. The C portion is mostly machine-independent and portable,
although some machine-specific code is needed for some idiosyncratic computer
architectures and to interface some operating-system environments.

There are two main reasons for concentrating the implementation in the
run-time system:

Organization of the Implementation 45

e Some features of Icon do not lend themselves to translation directly into
executable code for the target machine, since there is no direct image for
them in the target-machine architecture. The target machine code neces-
sary to carry out these operations therefore is too large to place in line;
instead, it is placed in library routines that are called from in-line code.
Such features range from operations on structures to string scanning.

e Operations that cannot be determined at translation time must be done at
run time. Such operations range from type checking to storage allocation
and garbage collection.

The run-time system is logically divided into four main parts: initialization and
termination routines, the interpreter, library routines called by the interpreter, and
support routines called by library routines.

Initialization and Termination Routines. The initialization routine sets
up regions in which objects created at run time are allocated. It also initializes
some structures that are used during program execution. Once these tasks are
completed, control is transferred to the Icon interpreter.

When a program terminates, either normally or because of an error, termina-
tion routines flush output buffers and return control to the operating system.

The Interpreter. The interpreter analyzes icode instructions and their
operands and performs corresponding operations. The interpreter is relatively
simple, since most complex operations are performed by library routines. The
interpreter itself is described in Chapter 8.

Library Routines. Library routines are divided into three categories,
depending on the way they are called by the interpreter: routines for Icon opera-
tors, routines for Icon built-in functions, and routines for complicated virtual
machine instructions.

The meanings of operators are known to the translator and linker, and hence
they can be called directly. On the other hand, the meanings of functions cannot
be determined until they are executed, and hence they are called indirectly.

Support Routines. Support routines include storage allocation and gar-
bage collection, as well as type checking and conversion. Such routines typically
are called by library routines, although some are called by other support routines.

RETROSPECTIVE: Superficially, the implementation of Icon appears to be conven-
tional. An Icon program is translated and linked to produce an executable binary
file. The translator and linker are conventional, except that they generate code
and data structures for a virtual machine instead of for a specific computer.

46 Chapter 3

The run-time system dominates the implementation and plays a much larger
role than is played by run-time systems in conventional implementations. This
run-time system is the focus of the remainder of this book.

EXERCISES

3.1 Explain why there is only a comparatively small difference in execution
times between a version of Icon that generates assembly-language code and
one that generates virtual machine code that is interpreted.

3.2 List all the tokens in the Icon grammar that are legal as the beginning of an
expression and as the end of an expression. Are there any tokens that are
legal as both? As neither?

3.3 Is a semicolon inserted by the lexical analyzer between the following two
program lines?

st = 82
|| s3

3.4 Is it possible for semicolon insertion to introduce syntactic errors into a pro-
gram that would be syntactically correct without semicolon insertion?

3.5 What would be the advantages and disadvantages of merging the Icon trans-
lator and linker into a single program?

CHAPTER 4

Values and Variables

PersPECTIVE: No feature of the Icon programming language has a greater impact
on the implementation than untyped variables—variables that have no specific
type associated with them. This feature originated in Icon’s predecessors as a
result of a desire for simplicity and flexibility.

The absence of type declarations reduces the amount that a programmer has
to learn and remember. It also makes programs shorter and (perhaps) easier to
write. The flexibility comes mainly from the support for heterogeneous aggre-
gates. A list, for example, can contain a mixture of strings, integers, records, and
other lists. There are numerous examples of Icon programs in which this flexibil-
ity leads to programming styles that are concise and simple. Similarly, ‘‘gen-
eric’” procedures, whose arguments can be of any type, often are useful, espe-
cially for modeling experimental language features.

While these facilities can be provided in other ways, such as by C’s union
construct, Icon provides them by the absence of features, which fits with the phi-
losophy of making it easy to write good programs rather than hard to write bad
ones.

The other side of the coin is that the lack of type declarations for variables
makes it impossible for the translator to detect most type errors and defers type
checking until the program is executed. Thus, a check that can be done only
once at translation time in a language with a strong compile-time type system
must be done repeatedly during program execution in Icon. Furthermore, just as
the Icon translator cannot detect most type errors, a person who is writing or
reading an Icon program does not have type declarations to help clarify the intent
of the program.

Icon also converts arguments to the expected type where possible. This
feature is, nevertheless, separable from type checking; Icon could have the latter
without the former. However, type checking and conversion are naturally
intertwined in the implementation.

As far as the implementation is concerned, untyped variables simplify the
translator and complicate the run-time system. There is little the translator can do
about types. Many operations are polymorphic, taking arguments of different
types and sometimes performing significantly different computations, depending
on those types. Many types are convertible to others. Since procedures are data
values and may change meaning during program execution, there is nothing the

48 Chapter 4

translator can know about them. For this reason, the translator does not attempt
any type checking or generate any code for type checking or conversion. All such
code resides in the run-time routines for the functions and operations themselves.

There is a more subtle way in which untyped variables influence the imple-
mentation. Since any variable can have any type of value at any time, and can
have different types of values at different times, all values must be the same size.
Furthermore, Icon’s rich repertoire of data types includes values of arbitrary
size—lists, tables, procedures, and so on.

The solution to this problem is the concept of a descriptor, which either
contains the data for the value, if it is small enough, or else contains a pointer to
the data if it is too large to fit into a descriptor. The trick, then, is to design
descriptors for all of Icon’s data types, balancing considerations of size, ease of
type testing, and efficiency of accessing the actual data.

4.1 DESCRIPTORS

Since every Icon value is represented by a descriptor, it is important that descrip-
tors be as small as possible. On the other hand, a descriptor must contain enough
information to determine the type of the value that it represents and to locate the
actual data. Although values of some types cannot possibly fit into any fixed-size
space, it is desirable for frequently used, fixed-sized values, such as integers, to
be stored in their descriptors. This allows values of these types to be accessed
directly and avoids the need to provide storage elsewhere for such values.

If Icon were designed to run on only one kind of computer, the size and lay-
out of the descriptor could be tailored to the architecture of the computer. Since
the implementation is designed to run on a wide range of computer architectures,
Icon takes an approach similar to that of C. Its descriptor is composed of
“‘words,”” which are closely related to the concept of a word on the computer on
which Icon is implemented. One word is not large enough for a descriptor that
must contain both type information and an integer or a pointer. Therefore, a
descriptor consists of two words, which are designated as the d-word and the v-
word, indicating that the former contains descriptive information, while the latter
contains the value

d-word

v-word

The dotted line between the two words of a descriptor is provided for readability.
A descriptor is merely two words, and the fact that these two words constitute a
descriptor is a matter of context.

The v-word of a descriptor may contain either a value, such as an integer, or
a pointer to other data. In C terms, the v-word may contain a variety of types,

Values and Variables 49

including both ints and pointers. On many computers, C ints and C pointers are
the same size. For some computers, however, C compilers have a large-
memory-model option in which integers are 16 bits long, allowing efficient arith-
metic, while pointers are 32 bits long, allowing access to a large amount of
memory. In this situation, C longs are the same size as C pointers. There are
other models, as well as computers with other word sizes, but the main con-
siderations in the implementation of Icon are the accommodation of computers
with 16- and 32-bit words and the large-memory model, in which pointers are
larger than integers. In the large-memory model, a v-word must accommodate
the largest of the types.

The d-words of descriptors contain a type code (a small integer) in their
least significant bits and flags in their most significant bits. There are twelve type
codes that correspond to source-language data types:

data type type code
null null
integer integer or long
real number real

cset cset

file file
procedure proc

list list

set set

table table
record record
co-expression coexpr

Other type codes exist for internal objects, which are on a par with source-
language objects, from an implementation viewpoint, but which are not visible at
the source-language level. The actual values of these codes are not important,
and they are indicated in diagrams by their type code names.

4.1.1 Strings

There is no type code for strings. They have a special representation in
which the d-word contains the length of the string (the number of characters in it)
and the v-word points to the first character in the string:

n{ length

——— 1 first character

String descriptors are called qualifiers. In order to make qualifiers more

50 Chapter 4

intelligible in the diagrams that follow, a pointer to a string is followed by the
string in quotation marks rather than by an address. For example, the qualifier for
"hello" is depicted as

———+—> "hello"

In order to distinguish qualifiers from other descriptors with type codes that
might be the same as a string length, all descriptors that are not qualifiers have an
n flag in the most significant bit of the d-word. The d-words of qualifiers do not
have this n flag, and string lengths are restricted to prevent their overflow into
this flag position in situations where words are only 16 bits long.

4.1.2 The Null Value

A descriptor for the null value has the form

As explained previously, the n flag occurs in this and all other descriptors that are
not qualifiers so that strings can be easily and unambiguously distinguished from
all other kinds of values. The value in the v-word could be any constant value,
but zero is useful and easily identified—and suggests ‘‘null.”’

4.1.3 Integers

Icon supports 32-bit integers, regardless of the computer on which it is
implemented. Such integers therefore are either C ints or longs, depending on the
computer architecture. On computers with 32-bit ints, the value of an Icon
integer is stored in the v-word of its descriptor. For example, the integer 13570
is represented by

n integer

Values and Variables 51

Note that the n flag distinguishes this descriptor from a string whose first charac-
ter might be at the address 13570 and whose length might have the same value as
the type code for integer.

On computers with 16-bit ints, an Icon integer that fits in 16 bits also is
stored in the v-word of a descriptor. An integer that is too large to fit into a word
is stored in a block that is pointed to by the v-word, as illustrated in the next sec-
tion. The two representations of integers are distinguished by different internal
type codes: integer for integers that are contained in the v-words of their descrip-
tors and long for integers that are contained in blocks pointed to by the v-words
of their descriptors. Thus, there are two internal types for one source-language

" data type.

4.2 BLOCKS

All other types of Icon data are represented by descriptors with v-words that
point to blocks of words. These blocks have a comparatively uniform structure
that is designed to facilitate their processing during garbage collection.

The first word of every block, called its title, contains a type code. This
type code is the same code that is in the type-code portion of the d-word of a
descriptor that points to the block. Some blocks are fixed in size for all values of
a given type. For example, on a computer with 16-bit words, the source-
language integer 80,000 is stored in a large integer block:

long| title

= 80000 .

The p flag in the descriptor indicates that the v-word contains a pointer to a
block.

Blocks of some other types, such as record blocks, vary in size from value to
value, but any one block is fixed in size and never grows or shrinks. If the type
code in the title does not determine the size of the block, the second word in the
block contains its size in bytes. In the diagrams that follow, the sizes of blocks
are given for computers with 32-bit words. The diagrams would be slightly dif-
ferent for computers with 16-bit words.

Records, which differ in size depending on how many fields they have, are
examples of blocks that contain their sizes. For example, given the record
declaration

record complex(r, i)

and

52 Chapter 4

point := complex(1,3)

the value of point is

BT, record
record| title
32| size of block in bytes
... proc
............... —> record-constructor block
n integér
.......................... ;
n integer
....................... 3

The record-constructor block contains information that is needed to resolve field
references.
On the other hand, with the declaration

record term(value, code, count)
and
word := term("chair", "noun",4)

the value of word is:

np record

record| title
40| size of block

RS proc
— > record-constructor block
......................... 5
- "chair"
.................. 4
— "noun”
n integer

Values and Variables 53

As illustrated by these examples, blocks may contain descriptors as well as
non-descriptor data. Non-descriptor data comes first in the block, followed by
any descriptors, as illustrated by the preceding figure. The location of the first
descriptor in a block is constant for all blocks of a given type, which facilitates
garbage collection.

Blocks for the remaining types are described in subsequent chapters.

4.3 VARIABLES

Variables are represented by descriptors, just as values are. This representation
allows values and variables to be treated uniformly in terms of storage and
access. Variables for identifiers point to descriptors for the corresponding values.
Variables always point to descriptors for values, never to other variables. For
example, if

s = "hello"

then a variable for s has the form

— > "hello"

The v flag distinguishes descriptors for variables from descriptors for values.

The values of local identifiers are kept on a stack, while the values of global
and static identifiers are located at fixed places in memory. Variables that point
to the values of identifiers are created by icode instructions that correspond to the
use of the identifiers in the program.

Some variables, such as record field references, are computed. A variable
that references a value in a data structure points directly to the descriptor for the
value. The least-significant bits of the d-word for such a variable contain the
offset, in words, of the value descriptor from the top of the block in which the
value is contained. This offset is used by the garbage collector. The use of
words, rather than bytes, allows larger offsets, which is important for computers
with 16-bit words. For example, the variable word.count for the record given in
the preceding section is

54 Chapter 4

40

—> record-constructor block

npv 8 — L < "noun"

The variable points directly to the value rather than to the title of the block
so that access to the value is more efficient. Note that the variable word.count
cannot be determined at translation time, since the type of word is not known
then and different record types could have count fields in different positions.

4.3.1 Operations on Variables

There are two fundamentally different contexts in which a variable can be
used: dereferencing and assignment.

Suppose, as shown previously, that the value of the identifier s is the string
"hello”. Then a variable descriptor that points to the value of s and the
corresponding value descriptor for "hello" have the following relationship:

——— "hello”

In an expression such as write(s), s is dereferenced by fetching the descriptor
pointed to by the v-word of the variable.
In the case of assignment, as in

s = 13570

the value descriptor pointed to by the v-word of the variable descriptor is
changed:

Values and Variables 55

n integer

These operations on variables correspond to indirect load and store instructions
of a typical computer.

4.3.2 Trapped Variables

Icon has several variables with special properties that complicate assign-
ment and dereferencing. Consider, for example, the keyword &trace. Its value
must always be an integer. Consequently, in an assignment such as

&trace = expr

the value produced by expr must be checked to be sure that it is an integer. If it
is not, an attempt is made to convert it to an integer, so that in

&trace = "1"

the value assigned to &trace is the integer 1, not the string "1".

There are four keyword variables that require special processing for assign-
ment: &trace, &random, &subject, and &pos. The keyword &random is treated in
essentially the same way that &trace is. Assignment to &subject requires a string
value and has the side effect of assigning the value 1 to &pos. Assignment to
&pos is even more complicated: not only must the value assigned be an integer,
but if it is not positive, it must also be converted to the positive equivalent with
respect to the length of &subject. In any event, if the value in the assignment to
&pos is not in the range of &subject, the assignment fails. Dereferencing these
keywords, on the other hand, requires no special processing.

A naive way to handle assignment to these keywords is to check every vari-
able during assignment to see whether it is one of the four that requires special
processing. This would place a significant computational burden on every assign-
ment. Instead, Icon divides variables into two classes: ordinary and trapped.
Ordinary variables point to their values as illustrated previously and require no
special processing. Trapped variables, so called because their processing is
““trapped,’’ are distinguished from ordinary variables by a t flag. Thus, assign-
ment only has to check a single flag to separate the majority of variables from
those that require special processing.

A trapped-variable descriptor for a keyword points to a block that contains
the value of the keyword, its string name, and a pointer to a C function that is
called when assignment to the keyword is made. For example, the trapped vari-
able for &trace is:

56 Chapter 4

tvkywd | title
—— > assignment function
n integer

——> "&trace”

It is worth noting that the more conventional approach to handling the prob-
lem of assignment to keywords is to compile special code if a keyword occurs in
an assignment context. It is not always possible, however, to determine the con-
text in which a variable is used in Icon. Consider a procedure of the form

procedure diagnose(s)

return &trace
end

The semantics of Icon dictate that the result returned in this case should be a
variable, not just its value, so that it is possible to write an expression such as

diagnose(s) := 10

which has the effect of assigning the value 10 to &trace.

The translator has no way of knowing that an assignment to the call
diagnose(s) is equivalent to an assignment to &trace. In fact, the translator cannot
even determine that the value of diagnose will be a function when the previous
assignment is performed, much less that it will be the procedure given earlier.

Thus, the trapped-variable mechanism provides a way to handle, uniformly,
all the situations in which such a keyword can be used.

4.4 DESCRIPTORS AND BLOCKSINC

Descriptors and blocks of data are described and depicted abstractly in the previ-
ous sections of this chapter. In order to understand the implementation of some
aspects of Icon, it is helpful to examine the C code that actually defines and
manipulates data.

The following sections illustrate typical C declarations for the structures
used in the implementation of Icon. Some of the terminology and operations that
appear frequently in the C code are included as well. Other operations are intro-
duced in subsequent chapters, as they are needed.

Values and Variables 57

4.4.1 Descriptors

As mentioned in Sec. 4.1, for C compilers in which ints and pointers are the
same size, the size of a word is the size of an int, while if pointers are larger than
ints, the size of a word is the size of a long. The difference between these two
models of memory is handled by typedefs under the control of conditional com-
pilation. Two constants that characterize the sizes are defined: IntSize and
PirSize. If these sizes are different, the constant MixedSizes is defined:

#if IntSize != PtrSize
#define MixedSizes
#endif

This constant is used to select appropriate definitions for signed and unsigned
words:

#ifdef MixedSizes

‘typedef long word;

typedef unsigned long uword;
#else

typedef int word;

typedef unsigned int uword;
#endif

A descriptor is declared as a structure:

struct descrip { /* descriptor */

word dword; /* type field =/
union {
word integr; /* integer value */
char =sptr; [+ pointer to character string */
union block =*bptr; /+ pointer to a block */
struct descrip *dptr; /+ pointer to a descriptor */
} vword;
|3

The v-word of a descriptor is a union that reflects its various uses: an integer, a
pointer to a string, a pointer to a block, or a pointer to another descriptor (in the
case of a variable).

4.4.2 Blocks

Each block type has a structure declaration. For example, the declaration for
record blocks is

58 Chapter 4

struct b_record { /* record block */

word title; /* T_Record #/

word blksize; /% size of block */

struct descrip recdesc; /% descriptor for record constructor */
struct descrip fields[1]; /x fields */

I
Blocks for records vary in size, depending on the number of fields declared for
the record type. The size of | in

struct descrip fields{1];

is provided to satisfy the C compiler. Actual blocks for records are constructed at
run time in a region that is managed by Icon’s storage allocator. Such blocks con-
form to the previous declaration, but the number of fields varies. The declaration
provides a means of accessing portions of such blocks from C.

The declaration for keyword trapped-variable blocks is

struct b_tvkywd { /* keyword trapped variable block */

word title; /% T_Tvkywd */

int (xputval) (); /% assignment function for keyword */
struct descrip kyval; /% keyword value */

struct descrip kyname; /% keyword name */

b
Note that the title fields of b_record and b_tvkywd contain type codes, as
indicated in previous diagrams. The second field of b_record is a size as men-
tioned previously, but b_tvkywd has no size field, since all keyword trapped-
variable blocks are the same size, which therefore can be determined from their
type.
The block union given in the declaration of descrip consists of a union of all
block types:

Values and Variables 59

union block { /* general block */
struct b_int longint;
struct b_real realblk;
struct b_cset cset;
struct b_file file;
struct b_proc proc;
struct b_list list;
struct b_lelem lelem;
struct b_table table;
struct b_telem telem;
struct b_set set;
struct b_selem selem;
struct b_record record;
struct b_tvkywd tvkywd;
struct b_tvsubs tvsubs;
struct b_tvibl tvtbl;
struct b_coexpr coexpr;
struct b_refresh refresh;

|3
Note that there are several kinds of blocks in addition to those that correspond to
source-language data types.

4.4.3 Defined Constants

The type codes are defined symbolically:

#define T_Null 0
#define T_Integer 1
#define T_Long 2
#define T_Real 3
#define T_Cset 4
#define T_File 5
#define T_Proc 6
#define T_List 7
#define T_Table 8
#define T_Record 9
#define T_Telem 10
#define T_Lelem 11
#define T_Tvsubs 12
#define T_Tvkywd 13

#define T_Tvtbl 14

60 Chapter 4 Values and Variables 61

#define T_Set 15 these are illustrated by the C function for the Icon operator *x, which produces
#define T_Selem 16 the size of x:
#def!ne T_Refresh 17 OpDcl(size, 1,"s")
#define T_Coexpr 18 {
The type codes in diagrams are abbreviated, as indicated by previous examples. char sbuf[MaxCvilen];
The defined constants for d-word flags are Arg0.dword = D_lnteger:
n F_Ngqual if (Qual(Arg1)) {
p F_Ptr /%
v F_Var = If Arg1 is a string, return the length of the string.
t F _Tvar */
IntVal(A = StrLen(Arg1);
The values of these flags depend on the word size of the computer. }nt al(Arg0) = Strlen(Argt)
The d-words of descriptors are defined in terms of flags and type codes:
#define D_Null (T_Null | F_Nqual) e‘sj’*{
#define D_Integer (T_Integer | F_Nqual) . . N, .
#define D_Long (T Long | F_Ptr | F_Nqual) : Afl"g|1d lsf r;at e:) lstr;?g. For most types, the size is in the size
#define D_Real (T_Real | F_Ptr | F_Nqual) ield of the block.

* structure.

#define D_Cset (T_Cset | F_Ptr | F_Nqual) o

#define D_File (T_File | F_Ptr | F_Nqual))

#define D_Proc (T_Proc | F_Ptr | F_Nqual) swzt;t; e(TTypl(_ei(SAt.rgU) {

#define D_List (T_List | F_Ptr | F_Nqual) — o
#define D_Table (T_Table | F_Ptr | F_Nqual) IntVal(Arg0) = BikLoc(Arg1)—>list size;
#define D_Set (T_Set | F_Ptr | F_Nqual) break;

#define D_Selem (T_Selem | F_Ptr | F_Nqual) case T_Table:

#define D_Record (T_Record | F_Ptr | F_Nqual) IntVal(Arg0) = BlkLoc(Arg1)->table.size;
#define D_Telem (T_Telem | F_Ptr | F_Nqual) break;

#define D_Lelem (T_Lelem | F_Ptr | F_Nqual)

#define D_Tvsubs (T_Tvsubs | D_Tvar) case T_Set:

#define D_Tvtbl (T_Tvibl | D_Tvar) IntVal(Arg0) = BlkLoc(Arg1)—->set.size;
#define D_Tvkywd (T_Tvkywd | D_Tvar) break;

#define D_Coexpr (T_Coexpr | F_Ptr | F_Nqual) case T Cset:

#define D_Refresh (T_Refresh | F_Ptr | F_Nqual) !ntvgl(ArgO) = BlkLoc(Arg1)->cset.size;
#define D_Var (F_Var | F_Nqgual | F_Ptr) break;

#define D_Tvar (D_Var | F_Tvar)

As indicated previously, flags, type codes, and d-words are distinguished by
the prefixes F_, T_, and D_, respectively.

4.4.4 C Coding Conventions

A number of conventions are used in the C routines for the run-time system
to reduce detail and to focus on the way that Icon data is organized. Some of

62 Chapter 4

default:
1E]
* Try to convert it to a string.
*/
if (cvstr(&Arg1, sbuf) == CvtFail)

runerr(112, &Arg1);

IntVal(Arg0) = StrLen(Arg1);

}

/* no notion of size */

}

Return;

}

OpDcl is a macro that performs several operations. One of these operations is to
provide a C function declaration. Since the function is called by the interpreter,
the header is somewhat different from what it would be if size were called
directly. The details are described in Chapter 8.

By convention, the arguments of the Icon operation are referred to via Argt,
Arg2, The result that is produced for an operator is left in Arg0 rather than
being given as an argument of return. Thus, in the case of *x, the value of x is in
Arg1 and the returned size is placed in Arg0.

First, the d-word of ArgQ is set to D_lInteger, since the returmed value is an
integer. Next, there is a test to determine if Arg1 is a qualifier. Qual is a macro
that is defined as

#define Qual(d) (/((d).dword & F_Nqual))

If Arg1 is a qualifier, its length is placed in the v-word of Arg0, using the macros
IntVal and StrLen, which are defined as

#define IntvVal(d) ((d).vword.integr)
#define StrLen(d) ((d).dword)

If Arg1 is not a qualifier, then the size depends on the type. The macro Type iso-
lates the type code

#define Type(d) ((d).dword & TypeMask)

where the value of TypeMask is 63, providing considerable room for additions to
Icon’s 19 internal types.

For most Icon types that are represented by blocks, their source-language
size is contained in their size field. The macro BlklLoc accesses a pointer in the
v-field of a descriptor and is defined as

#define BlkLoc(d) ((d).vword.bptr)

If the type is not one of these, the final task is an attempt to convert Arg1 to
a string. The support routine cvsir does this, using the buffer sbuf provided by
size. The value of Arg1 is changed accordingly; note that its address is provided

Values and Variables 63

to cvstr. A fixed-sized buffer can be used, since there is a limit to the size of a
string that can be obtained by converting other types. This limit is 256, which is
reached only for conversion of &cset. The conversion may fail, as for *&null,
which is signalled by the return value CvtFail from cvstr. In this case, program
execution is terminated with a run-time error message, using runerr. If the
conversion is successful, the size is placed in the v-word of ArgO0, as is the case if
Arg1 was a qualifier originally. Note that the original test for a qualifier could be
replaced by a call to cvstr, and the call to cvstr in the default of the switch state-
ment could be eliminated. The code is written the way it is for efficiency, avoid-
ing the call to cvstr in the common case that the argument is a string. It is worth
noting that a special case is needed for strings, since a qualifier has no type code
and a test for a string cannot be included in the switch statement.

The macro Return returns from the function and signals the interpreter that a
result has been produced.

RETROSPECTIVE: Descriptors provide a uniform way of representing Icon values
and variables. Since descriptors for all types of data are the same size, there are
no problems with assigning different types of values to a variable—they all fit.

The importance of strings is reflected in the separation of descriptors into
two classes—qualifiers and nonqualifiers—Dby the n flag. The advantages of the
qualifier representation for strings are discussed in Chapter 5.

It is comparatively easy to add a new type to Icon. A new type code is
needed to distinguish it from other types. If the possible values of the new type
are small enough to fit into the v-word, as is the case for integers, no other data is
needed. For example, the value of a character data type could be contained in its
descriptor. For types that have values that are too large to fit into a v-word,
pointers to blocks containing the data are placed in the v-words instead. Lists,
sets, and tables are examples of data types that are represented this way. See
Chapters 6 and 7.

EXERCISES

4.1 Give examples of Icon programs in which heterogeneous aggregates are
used in significant ways.

4.2 Design a system of type declarations for Icon so that the translator could do
type checking. Give special consideration to aggregates, especially those
that may change in size during program execution. Do this from two per-
spectives: (a) changing the semantics of Icon as little as possible, and (b)
maximizing the type checking that can be done by the translator at the
expense of flexibility in programming.

64

Chapter 4

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Suppose that functions in Icon were not first-class values and that their
meanings were bound at translation time. How much could the translator do
in the way of error checking?

Compile a list of all Icon functions and operators. Are there any that do not
require argument type checking? Are there any that require type checking
but not conversion? Identify those that are polymorphic. For the
polymorphic ones, identify the different kinds of computations that are per-
formed depending on the types of the arguments.

Compose a table of all type checks and conversions that are required for
Icon functions and operators.

To what extent would the implementation of Icon be simplified if automatic
type conversion were not supported? How would this affect the program-
mer?

Why is it desirable for string qualifiers not to have flags and for all other
kinds of descriptors to have flags indicating they are not qualifiers, rather
than the other way around?

Is the n flag that distinguishes string qualifiers from all other descriptors
really necessary? If not, explain how to distinguish the different types of
descriptors without this flag.

On computers with extremely limited address space, two-word descriptors
may be impractically large. Describe how one-word descriptors might be
designed, discuss how various types might be represented, and describe the
ramifications for storage utilization and execution speed.

Identify the diagrams in this chapter that would be different if they were
drawn for a computer with 16-bit words. Indicate the differences.

There is nothing in the nature of keywords that requires them to be pro-
cessed in a special way for assignment but not for dereferencing. Invent a
new keyword that is a variable that requires processing when it is derefer-
enced. Show how to generalize the keyword trapped-variable mechanism
to handle such cases.

List all the syntactically distinct cases in which the tra