HMMER User’s Guide

Biological sequence analysis using profile hidden Markov models

http://hmmer.org/
Version 3.1b2; February 2015

Sean R. Eddy, Travis J. Wheeler
and the HMMER development team

Copyright (C) 2015 Howard Hughes Medical Institute.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are retained on all copies.

HMMER is licensed and freely distributed under the GNU General Public License version 3 (GPLv3). For a
copy of the License, see http://www.gnu.org/licenses/.

HMMER is a trademark of the Howard Hughes Medical Institute.

Contents

1

Introduction
How to avoid reading thismanual
How to avoid using this software (links to similar software)
What profile HMMs are e
Applications of profile HMMs
Designgoals of HMMERS3 e
What's new in HMMERS.1 o
What'’s still missing in HMMERS.1
How to learn more about profile HMMs
Installation
Quick installation instructions
Systemrequirements L L L
Multithreaded parallelization for multicores isthedefault
MPI parallelization for clusters is optional
Using build directories e
Makefile targetso
Why is the output of ‘make’ soclean?
What gets installed by ‘make install’, and where?,
Staged installations in a buildroot, for a packaging system L.
Workarounds for some unusual configure/compilation problems
Tutorial
The programs in HMMER
Supportedformats L e
Filesusedinthetutorial e
Searching a protein sequence database with a single protein profle HMM
Step 1: build a profile HMM with hmmbuild
Step 2: search the sequence database withhmmsearch
Single sequence protein queries usingphmmer L o oL
Iterative protein searches using jackhmmer o
Searching a DNA sequence database
Step 1: Optionally build a profile HMM with hmmbuild
Step 2: search the DNA sequence database withnhmmer
Searching a profile HMM database with aquery sequence
Step 1: create an HMM database flatfile,
Step 2: compress and index the flatfile with hmmpress
Step 3: search the HMM database with hmmscan
Creating multiple alignments with hmmalign oo . L

The HMMER profile/sequence comparison pipeline
Nullmodel.
MSV filter. e e e e
Biased composition filter. L
Viterbifilter. e e e
Forward filter/parser. e
Domain definition. e
Modifications to the pipeline as used for DNAsearch.
SSV, not MSV. . . . e e
There are no domains, but there are envelopes.

Biased composition.

5 Tabular output formats
Thetargethitstable
The domain hits table (protein searchonly),

6 Some other topics
How do I cite HMMER? e e
How do Ireportabug? e
Inputfiles o e
Reading from a stdin pipe using - (dash) as a filename argument

7 Manual pages

alimask - Add mask line to a multiple sequence alignment
SYNOPSIS . . o o e e e
Description e
Oplions e
Options for Specifying Mask Range
Options for Specifying the Alphabet
Options Controlling Profile Construction
Options Controlling Relative Weights
Other Options o e e
hmmalign - align sequencestoaprofle HMM
SYNOPSIS . . o . e
Description
Options e
hmmbuild - construct profile HMM(s) from multiple sequence alignment(s)
SYNOPSIS . . o e e
Description e
Options L e
Options for Specifying the Alphabet o
Options Controlling Profile Construction
Options Controlling Relative Weights
Options Controlling Effective Sequence Number,
Options Controlling Priors
Options Controlling E-value Calibration.
Other Options o e
hmmconvert - convert profile file toa HMMER format
SYNOPSIS . . o o e e e
Description e
Options e
hmmemit - sample sequences from a profile HMM oL
SYNOPSIS . . . e e
Description e e
Common Oplions e e
Options Controlling Whatto Emit
Options Controlling Emission from Profiles
Options Controlling Fancy Consensus Emission.
Other Options o o e
hmmfetch - retrieve profile HMM(s) from afile
SYNOPSIS e e
Description e

43

OptioNS . . . o 64

hmmlogo - given an HMM, produce data required to buildan HMMlogo 66
SYNOPSIS e e 66
Description e e 66
Oplions 66

hmmpgmd - daemon for searching a protein query against a protein database 67
SYNOPSIS . . . o e 67
Description o 67
Options L e 68
Expert Options o e e 68

hmmpress - prepare an HMM database forhmmscan 69
SYNOPSIS e 69
Description e 69
Options L 69

hmmscan - search protein sequence(s) against a protein profile database 70
SYNOPSIS . . o e e 70
Description e e 70
OptioNS . . . 70
Options for Controlling Output e 70
Options for Reporting Thresholds 71
Options for Inclusion Thresholds 71
Options for Model-specific Score Thresholding 72
Control of the Acceleration Pipeline 72
Other Options e e 73

hmmsearch - search profile(s) against a sequence database 74
SYNOPSIS . . o o e e 74
Description e e 74
OptioNS . . . 74
Options for Controlling Output 74
Options Controlling Reporting Thresholds 75
Options for Inclusion Thresholds 75
Options for Model-specific Score Thresholding 76
Options Controlling the Acceleration Pipeline 76
Other Oplions 77

hmmsim - collect score distributions on random sequences 78
SYNOPSIS . . o o e e 78
Description e e 78
Miscellaneous Options e e 79
Options Controlling Output e 79
Options Controlling Model Configuration (mode) 80
Options Controlling Scoring Algorithm 80
Options Controlling Fitted Tail Masses for Forward 81
Options Controlling H3 Parameter Estimation Methods 81
Debugging Options e 82
Experimental Options L 82

hmmstat - display summary statistics for a profile file 83
SYNOPSIS . . . o e e 83
Description e e 83
Oplions e e 83

jackhmmer - iteratively search sequence(s) against a proteindatabase 84
SYNOPSIS e e 84

Description e e 84

OptioNS . . . o 84
Options Controlling Output e 84
Options Controlling Single Sequence Scoring (first lteration) 85
Options Controlling Reporting Thresholds 85
Options Controlling Inclusion Thresholds 86
Options Controlling Acceleration Heuristics 87
Options Controlling Profile Construction (later lterations) 87
Options Controlling Relative Weights 88
Options Controlling Effective Sequence Number 89
Options Controlling Priors o o e 89
Options Controlling E-value Calibration., 89
Other Options e e 90
makehmmerdb - build a HMMER binary database file from a sequencefile. 91
SYNOPSIS . . o o e e 91
Description e e 91
Oplions e 91
Other Oplions 91
nhmmer - search DNA/RNA queries against a DNA/RNA sequence database 92
SYNOPSIS . . o o e e 92
Description e 92
OptioNS . . . e 92
Options for Controlling Output 92
Options Controlling Reporting Thresholds 93
Options for Inclusion Thresholds 93
Options for Model-specific Score Thresholding 93
Options Controlling the Acceleration Pipeline 94
Options for Specifying the Alphabet. o 94
Options Controlling Seed Search Heuristic. 95
Other Options e e e 95
nhmmscan - search nucleotide sequence(s) against a nucleotide profile 97
SYNOPSIS . . o e e 97
Description L e 97
Options e e 97
Options for Controlling Output e 97
Options for Reporting Thresholds 98
Options for Inclusion Thresholds 98
Options for Model-specific Score Thresholding 98
Control of the Acceleration Pipeline 99
Other Options e 99
phmmer - search protein sequence(s) against a protein sequence database 101
SYNOPSIS . . o o e e 101
Description e e 101
OptioNS . . . 101
Options for Controlling Output 101
Options Controlling Scoring System 102
Options Controlling Reporting Thresholds 102
Options Controlling Inclusion Thresholds 103
Options Controlling the Acceleration Pipeline 103
Options Controlling E-value Calibration. 104
Other Options e 104

8 File formats 106

HMMER profile HMM files e 106
header section L 106

main model section L e 109
Stockholm, the recommended multiple sequence alignmentformat 109
syntax of Stockholmmarkup 110
semantics of Stockholmmarkup 111
recognized #=GF annotations 111
recognized #=GS annotations 111
recognized #=GC annotations L 112
recognized #=GR annotations 112

A2M multiple alignment format L 112
Anexample A2Mfile L 112
Legalcharacters e 113
Determining consensus COIUMNS o o 113
hmmpgmd sequence database format 113
Fieldsinheaderline e 114
FASTA-like sequence format e 114
Creating a file in hmmpgmd format 115

9 Acknowledgements and history 116
Thanks e e e e e 116

1 Introduction

HMMER is used to search sequence databases for homologs of protein or DNA sequences, and to make
sequence alignments. HMMER can be used to search sequence databases with single query sequences
but it becomes particularly powerful when the query is an alignment of multiple instances of a sequence
family. HMMER makes a profile of the query that assigns a position-specific scoring system for substitutions,
insertions, and deletions. HMMER profiles are probabilistic models called “profile hidden Markov models”
(profile HMMSs) (Krogh et al., 1994; Eddy, 1998; Durbin et al., 1998).

Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older
scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote
homologs, because of the strength of its underlying probability models. In the past, this strength came
at a significant computational cost, with profile HMM implementations running about 100x slower than
comparable BLAST searches for protein search, and about 1000x slower than BLAST searches for DNA
search. With HMMERS.1, HMMER is now essentially as fast as BLAST for protein search, and roughly
5-10x slower than BLAST in DNA search’.

How to avoid reading this manual

We hate reading documentation. If you're like us, you're sitting here thinking, 117 pages of documentation,
you must be joking! | just want to know that the software compiles, runs, and gives apparently useful results,
before | read some 117 exhausting pages of someone’s documentation. For cynics that have seen one too
many software packages that don’t work:

e Follow the quick installation instructions on page 13. An automated test suite is included, so you will
know immediately if something went wrong.?

e Go to the tutorial section on page 18, which walks you through some examples of using HMMER on
real data.

Everything else, you can come back and read later.

How to avoid using this software (links to similar software)

Several implementations of profile HMM methods and related position-specific scoring matrix methods are
available.

Software URL

HMMER http://hmmer.org/

SAM http://www.cse.ucsc.edu/research/compbio/sam.html
PSI-BLAST http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psil.htm
PFTOOLS http://www.isrec.isb-sib.ch/profile/profile.html

The UC Santa Cruz SAM software is the closest relative of HMMER.

What profile HMMs are

Profile HMMs are statistical models of multiple sequence alignments, or even of single sequences. They
capture position-specific information about how conserved each column of the alignment is, and which
residues® are likely. Anders Krogh, David Haussler, and co-workers at UC Santa Cruz introduced profile

TNCBI blastn with ——wordsize 7; default wordsize of 11 is ~10x faster, but much less sensitive.

2Nothing should go wrong.

3In some circles, “residue” is used to refer specifically in reference to amino acids, but here we allow the term to alternately refer to
nucleotides.

HMMSs to computational biology (Krogh et al., 1994), adopting HMM techniques which have been used for
years in speech recognition. HMMs had been used in biology before the Krogh/Haussler work, notably by
Gary Churchill (Churchill, 1989), but the Krogh paper had a dramatic impact because HMM technology was
so well-suited to the popular “profile” methods for searching databases using multiple sequence alignments
instead of single query sequences.

“Profiles” had been introduced by Gribskov and colleagues (Gribskov et al., 1987, 1990), and several
other groups introduced similar approaches at about the same time, such as “flexible patterns” (Barton,
1990), and “templates”(Bashford et al., 1987; Taylor, 1986). The term “profile” has stuck.* All profile meth-
ods (including PSI-BLAST (Altschul et al., 1997)) are more or less statistical descriptions of the consen-
sus of a multiple sequence alignment. They use position-specific scores for amino acids or nucleotides
(residues) and position specific penalties for opening and extending an insertion or deletion. Traditional
pairwise alignment (for example, BLAST (Altschul et al., 1990), FASTA (Pearson and Lipman, 1988), or
the Smith/Waterman algorithm (Smith and Waterman, 1981)) uses position-independent scoring parame-
ters. This property of profiles captures important information about the degree of conservation at various
positions in the multiple alignment, and the varying degree to which gaps and insertions are permitted.

The advantage of using HMMs is that HMMs have a formal probabilistic basis. We use probability theory
to guide how all the scoring parameters should be set. Though this might sound like a purely academic
issue, this probabilistic basis lets us do things that more heuristic methods cannot do easily. One of the
most important is that HMMs have a consistent theory for setting position-specific gap and insertion scores.
The methods are consistent and therefore highly automatable, allowing us to make libraries of hundreds
of profile HMMs and apply them on a very large scale to whole genome analysis. One such database of
protein domain models is Pfam (Sonnhammer et al., 1997; Finn et al., 2010), which is a significant part of
the Interpro protein domain annotation system (Mulder et al., 2003). The construction and use of Pfam is
tightly tied to the HMMER software package.

Profile HMMs do have important limitations. One is that HMMs do not capture any higher-order corre-
lations. An HMM assumes that the identity of a particular position is independent of the identity of all other
positions.® Profile HMMs are often not good models of structural RNAs, for instance, because an HMM
cannot describe base pairs.

Applications of profile HMMs

HMMER can be used to replace BLASTP and PSI-BLAST for searching protein databases with single query
sequences. HMMER includes two programs for searching protein databases with single query sequences:
phmmer and jackhmmer, Where jackhmmer iS an iterative search akin to PSI-BLAST.

Another application of HMMER is when you are working on a sequence family, and you have carefully
constructed a multiple sequence alignment. Your family, like most protein (or DNA) families, has a number
of strongly (but not absolutely) conserved key amino acids (or nucleotides), separated by characteristic
spacing. You wonder if there are more members of your family in the sequence databases, but the family
is so evolutionarily diverse, a BLAST search with any individual sequence doesn’t even find the rest of the
sequences you already know about. You're sure there are some distantly related sequences in the noise.
You spend many pleasant evenings scanning weak BLAST alignments by eye to find ones with the right key
residues are in the right places, but you wish there was a computer program that did this a little better.

Another application is the automated annotation of the domain structure of proteins. Large databases of
curated alignments and HMMER models of known domains are available, including Pfam (Finn et al., 2010)
and SMART (Letunic et al., 2006) in the Interpro database consortium (Mulder et al., 2003). (Many “top ten
protein domains” lists, a standard table in genome analysis papers, rely heavily on HMMER annotation.)
Say you have a new sequence that, according to a BLAST analysis, shows a slew of hits to receptor

4There has been agitation in some quarters to call all such models “position specific scoring matrices”, PSSMs, but certain small
nocturnal North American marsupials have a prior claim on the name.

5This is not strictly true. There is a subtle difference between an HMM'’s state path (a first order Markov chain) and the sequence
described by an HMM (generated from the state path by independent emissions of symbols at each state).

tyrosine kinases. Before you decide to call your sequence an RTK homologue, you suspiciously recall that
RTK’s are, like many proteins, composed of multiple functional domains, and these domains are often found
promiscuously in proteins with a wide variety of functions. Is your sequence really an RTK? Or is it a novel
sequence that just happens to have a protein kinase catalytic domain or fibronectin type Ill domain?

Another application is the automated construction and maintenance of large multiple alignment databases.
It is useful to organize sequences into evolutionarily related families. But there are thousands of sequence
families, some of which comprise tens of thousands of sequences — and the primary sequence databases
continue to double every year or two. This is a hopeless task for manual curation; but on the other hand,
manual curation is still necessary for high-quality, biologically relevant multiple alignments. Databases like
Pfam (Finn et al., 2010) and Dfam (Wheeler et al., 2013) are constructed by distinguishing between a stable
curated “seed” alignment of a small number of representative sequences, and “full” alignments of all de-
tectable homologs; HMMER is used to make a model of the seed, search the database for homologs, and
can automatically produce the full alignment by aligning every sequence to the seed consensus.

You may find other applications as well. Using hidden Markov models to make a linear consensus
model of a bunch of related strings is a pretty generic problem, and not just in biological sequence analysis.
HMMERS3 has already been used to model mouse song [Elena Rivas, personal communication] and in the
past HMMER has reportedly been used to model music, speech, and even automobile engine telemetry. If
you use it for something particularly strange, we'd be curious to hear about it — but Sean never, ever wants
to see these error messages showing up on the console of his Saab.

Design goals of HMMER3

In the past, profile HMM methods were considered to be too computationally expensive, and BLAST has
remained the main workhorse of sequence similarity searching. The main objective of the HMMERS project
(begun in 2004) is to combine the power of probabilistic inference with high computational speed. We aim to
upgrade some of molecular biology’s most important sequence analysis applications to use more powerful
statistical inference engines, without sacrificing computational performance.

Specifically, HMMERS has three main design features that in combination distinguish it from previous
tools:

Explicit representation of alignment uncertainty. Most sequence alignment analysis tools report only a
single best-scoring alignment. However, sequence alignments are uncertain, and the more distantly
related sequences are, the more uncertain alignments become. HMMER3 calculates complete pos-
terior alignment ensembles rather than single optimal alignments. Posterior ensembles get used for
a variety of useful inferences involving alignment uncertainty. For example, any HMMER sequence
alignment is accompanied by posterior probability annotation, representing the degree of confidence
in each individual aligned residue.

Sequence scores, not alignment scores. Alignment uncertainty has an important impact on the power of
sequence database searches. It's precisely the most remote homologs — the most difficult to identify
and potentially most interesting sequences — where alignment uncertainty is greatest, and where the
statistical approximation inherent in scoring just a single best alignment breaks down the most. To
maximize power to discriminate true homologs from nonhomologs in a database search, statistical
inference theory says you ought to be scoring sequences by integrating over alignment uncertainty,
not just scoring the single best alignment. HMMERS'’s log-odds scores are sequence scores, not just
optimal alignment scores; they are integrated over the posterior alignment ensemble.

Speed. A major limitation of previous profile HMM implementations (including HMMER2) was their slow
performance. HMMERS3 implements a heuristic acceleration algorithm. For most protein queries, it's
about as fast as BLAST, while for DNA queries it’s typically less than 10x slower than sensitive settings
for BLAST.

Individually, none of these points is new. As far as alignment ensembles and sequence scores go, pretty
much the whole reason why hidden Markov models are so theoretically attractive for sequence analysis is
that they are good probabilistic models for explicitly dealing with alignment uncertainty. The SAM profile
HMM software from UC Santa Cruz has always used full probabilistic inference (the HMM Forward and
Backward algorithms) as opposed to optimal alignment scores (the HMM Viterbi algorithm). HMMER2 had
the full HMM inference algorithms available as command-line options, but used Viterbi alignment by default,
in part for speed reasons. Calculating alignment ensembles is even more computationally intensive than
calculating single optimal alignments.

One reason why it’'s been hard to deploy sequence scores for practical large-scale use is that we haven’t
known how to accurately calculate the statistical significance of a log-odds score that’'s been integrated
over alignment uncertainty. Accurate statistical significance estimates are essential when one is trying to
discriminate homologs from millions of unrelated sequences in a large sequence database search. The
statistical significance of optimal alignment scores can be calculated by Karlin/Altschul statistics (Karlin and
Altschul, 1990, 1993). Karlin/Altschul statistics are one of the most important and fundamental advances
introduced by BLAST. However, this theory doesn’t apply to integrated log-odds sequence scores (HMM
“Forward scores”). The statistical significance (expectation values, or E-values) of HMMERS sequence
scores is determined by using recent theoretical conjectures about the statistical properties of integrated
log-odds scores which have been supported by numerical simulation experiments (Eddy, 2008).

And as far as speed goes, there’s really nothing new about HMMERS3’s speed either. Besides Kar-
lin/Altschul statistics, the main reason BLAST has been so useful is that it's so fast. Our design goal in
HMMERS3 was to achieve rough speed parity between BLAST and more formal and powerful HMM-based
methods. The acceleration algorithm in HMMERS is a new heuristic. It seems likely to be more sensitive
than BLAST’s heuristics on theoretical grounds. It certainly benchmarks that way in practice, at least in our
hands. Additionally, it's very well suited to modern hardware architectures. We expect to be able to take
good advantage of GPUs and other parallel processing environments in the near future.

What’s new in HMMER3.1

DNA sequence comparison. HMMER now includes tools that are specifically designed for DNA/DNA
comparison: nhmmer and nhmmscan. The most notable improvement over using HMMERS’s tools is the
ability to search long (e.g. chromosome length) target sequences.

More sequence input formats. HMMER now handles a wide variety of input sequence file formats, both
aligned (Stockholm, Aligned FASTA, Clustal, NCBI PSI-BLAST, PHYLIP, Selex, UCSC SAM A2M) and
unaligned (FASTA, EMBL, Genbank), usually with autodetection.

MSYV stage of HMMER acceleration pipeline now even faster. Bjarne Knudsen, Chief Scientific Officer
of CLC bio in Denmark, contributed an important optimization of the MSV filter (the first stage in the accel-
erated "filter pipeline”) that increases overall HMMERS speed by about two-fold. This speed improvement
has no impact on sensitivity.

Faster DNA search. This beta release includes a new option for increasing the speed of searching DNA
sequence files. A binary file is created in a preprocessing step, using the tool makehmmerdb. The tool
nhmmer then utilizes this binary format to support a fast new seed-finding stage. Using default settings in
nhmmer, We have observed a roughly 10-fold acceleration with small loss of sensitivity on benchmarks. (This
method has been extensively tested, but should still be treated as somewhat experimental.)

10

What’s still missing in HMMERS3.1

Even though this is a stable public release that we consider suitable for large-scale production work (genome
annotation, Pfam analysis, whatever), at the same time, HMMER remains a work in progress. We think the
codebase is a suitable foundation for development of a number of significantly improved approaches to
classically important problems in sequence analysis. Some of the more important “holes” for us are:

Translated comparisons. We'd of course love to have the HMM equivalents of BLASTX, TBLASTN, and
TBLASTX. They’ll come.

Profile/profile comparison. A number of pioneering papers and software packages have demonstrated
the power of profile/profile comparison for even more sensitive remote homology detection. We will aim to
develop profile HMM methods in HMMER with improved detection power, and at HMMERS speed.

We also have some technical and usability issues we will be addressing Real Soon Now:

More alighment modes. HMMERS3 only does local alignment. HMMERZ2 also could do glocal alignment
(align a complete model to a subsequence of the target) and global alignment (align a complete model to a
complete target sequence). The E-value statistics of glocal and global alignment remain poorly understood.
HMMERS relies on accurate significance statistics, far more so than HMMER2 did, because HMMERS’s
acceleration pipeline works by filtering out sequences with poor P-values.

More speed. Even on x86 platforms, HMMERS3’s acceleration algorithms are still on a nicely sloping bit
of their asymptotic optimization curve. We still think we can accelerate the code by another two-fold or
so, perhaps more for DNA search. Additionally, for a small number of HMMs (< 1% of Pfam models), the
acceleration core is performing relatively poorly, for reasons we pretty much understand (having to do with
biased composition; most of these pesky models are hydrophobic membrane proteins), but which are non-
trivial to work around. This’ll produce an annoying behavior that you may notice: if you look systematically,
sometimes you'll see a model that runs at something more like HMMERZ2 speed, 100x or so slower than an
average query. This, needless to say, Will Be Fixed.

More processor support. One of the attractive features of the HMMERS3 “MSV” acceleration algorithm
is that it is a very tight and efficient piece of code, which ought to be able to take advantage of recent
advances in using massively parallel GPUs (graphics processing units), and other specialized processors
such as the Cell processor, or FPGAs. We have prototype work going on in a variety of processors, but
none of this is far along as yet. But this work (combined with the parallelization) is partly why we expect to
wring significantly more speed out of HMMER in the future.

How to learn more about profile HMMs

Cryptogenomicon (http://cryptogenomicon.org/) is a blog where Sean will be talking about issues
as they arise in HMMERS, and where you can comment or follow the discussion.

Reviews of the profile HMM literature have been written by Sean (Eddy, 1996, 1998) and by Anders
Krogh (Krogh, 1998).

For details on how profile HMMs and probabilistic models are used in computational biology, see the
pioneering 1994 paper from Krogh et al. (Krogh et al., 1994) or our book Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., 1998).

11

For details on many aspects of the inner workings of HMMERS, see recent papers by Sean (Eddy, 2009,
2011).

To learn more about HMMs from the perspective of the speech recognition community, an excellent
tutorial introduction has been written by Rabiner (Rabiner, 1989).

> How do I cite HMMER? There is still no “real” paper on HMMER. If you're writing for an enlightened
(url-friendly) journal, the best reference is http://hmmer.org/. If you must use a paper reference, the
best one to use is Sean’s 1998 profile HMM review (Eddy, 1998).

12

2 Installation

Quick installation instructions

Download hmmer-3.1b2.tar.gz from http://hmmer.org/; unpack it:
> wget ftp://selab.janelia.org/pub/software/hmmer3/3.1b2/hmmer-3.1b2.tar.gz
> tar xf hmmer-3.1b2.tar.gz
> cd hmmer-3.1bl

If you have downloaded a variant "with binaries”, the pre-compiled binaries are found in the directory
./binaries. You may copy these into a directory of your choosing, or simply run them from here (for
example, by adding this directory to your paTH variable).

If you have downloaded the HMMER source code, you'll need to compile the software with configure
and make:

> ./configure
> make

To compile and run a test suite to make sure all is well, you can optionally do:

> make check

All these tests should pass.

You don’t have to install HMMER programs to run them. The newly compiled binaries are now in the
src directory. You can run them from there. To install the programs and man pages somewhere on your
system, do:

> make install

By default, programs are installed in /usr/local/bin and manpagesin /usr/local/share/man/manl/.
You can change the /usr/1local prefix to any directory you want using the . /configure --prefix option,
asin ./configure --prefix /the/directory/you/want.

Optionally, you can install the Easel library package as well, including its various “miniapplications”, in
addition to its library and header files. We don’t do this by default, in case you already have a copy of Easel
separately installed:

> cd easel; make install

That’s it. You can keep reading if you want to know more about customizing a HMMER installation, or

you can skip ahead to the next chapter, the tutorial.

System requirements

Operating system: HMMER is designed to run on POSIX-compatible platforms, including UNIX, Linux
and MacOS/X. The POSIX standard essentially includes all operating systems except Microsoft Windows. '
We have tested most extensively on Linux and on MacOS/X, because these are the machines we develop
on.

Processor: HMMER depends on vector parallelization methods that are supported on most modern pro-
cessors. H3 requires either an x86-compatible (IA32, |1A64, or Intel64) processor that supports the SSE2
vector instruction set, or a PowerPC processor that supports the Altivec/VMX instruction set. SSE2 is sup-
ported on Intel processors from Pentium 4 on, and AMD processors from K8 (Athlon 64) on; we believe this
includes almost all Intel processors since 2000 and AMD processors since 2003. Altivec/VMX is supported
on Motorola G4, IBM G5, and IBM PowerPC processors starting with the Power6, which we believe includes
almost all PowerPC-based desktop systems since 1999 and servers since 2007.

If your platform does not support one of these vector instruction sets, the configure script will revert to
an unoptimized implementation called the “dummy” implementation. The dummy implementation is two

"There are add-on products available for making Windows more POSIX-compliant and more compatible with GNU-ish configures
and builds. One such product is Cygwin, http:www.cygwin.com, which is freely available. Although we do not test on Windows
platforms, we understand HMMER builds fine in a Cygwin environment on Windows.

13

orders of magnitude slower. It will enable you to see H3’s scientific features on a much wider range of
processors, but is not suited for real production work.

We do aim to be portable to all modern processors. The acceleration algorithms are designed to be
portable despite their use of specialized SIMD vector instructions. We hope to add support for the Sun
SPARC VIS instruction set, for example. We believe that the code will be able to take advantage of GP-
GPUs and FPGAs in the future.

Compiler: The source code is C conforming to POSIX and ANSI C99 standards. It should compile with
any ANSI C99 compliant compiler, including the GNU C compiler gcc. We test the code using both the gcc
and icc compilers. We find that icc produces somewhat faster code at present.

Libraries and other installation requirements: HMMER includes a software library called Easel, which
it will automatically compile during its installation process. By default, HMMERS3 does not require any
additional libraries to be installed by you, other than standard ANSI C99 libraries that should already be
present on a system that can compile C code. Bundling Easel instead of making it a separate installation
requirement is a deliberate design decision to simplify the installation process.?

Configuration and compilation use several UNIX utilities. Although these utilities are available on all
UNIX/Linux/MacOS systems, old versions may not support all the features the ./configure script and
Makefiles are hoping to find. We aim to build on anything, even old Ebay’ed junk, but if you have an old
system, you may want to hedge your bets and install up-to-date versions of GNU tools such as GNU make
and GNU grep.

Multithreaded parallelization for multicores is the default

The six search programs and hmmbuild support multicore parallelization using POSIX threads. By default,
the configure script will identify whether your platform supports POSIX threads (almost all platforms do),
and will automatically compile in multithreading support.

If you want to disable multithreading at compile time, recompile from source after giving the --disable-threads
flagto . /configure.

By default, our multithreaded programs will use all available cores on your machine. You can control the
number of cores each HMMER process will use for computation with the -—-cpu <x> command line option or
the eMMER _NCPU environment variable. Even with a single processing thread (--cpu 1), HMMER will devote
a second execution thread to database input, resulting in possible speedup over serial execution.

If you specify —-cpu 0, the program will run in serial-only mode, with no threads. This might be useful if
you suspect something is awry with the threaded parallel implementation.

MPI parallelization for clusters is optional

MPI (Message Passing Interface) parallelization on clusters is now supported in hmmbuild and all search
programs except nhmmer and nhmmscan. To use MPI, you first need to have an MPI library installed, such
as OpenMPI (www . open-mpi .org). We use Intel MPI at Janelia.

MPI support is not enabled by default, and it is not compiled into the precompiled binaries that we supply
with HMMER. To enable MPI support at compile time, give the ——enable-mpi option to the ./configure
command.

To use MPI parallelization, each program that has an MPI-parallel mode has an --mpi command line
option. This option activates a master/worker parallelization mode. (Without the --mpi option, if you run
a program under mpirun on N nodes, you’ll be running N independent duplicate commands, not a single
MPI-enabled command. Don’t do that.)

2If you install more than one package that uses the Easel library, it may become an annoyance; you'll have multiple instantiations of
Easel lying around. The Easel APl is not yet stable enough to decouple it from the applications that use it, like HMMER and Infernal.

14

The MPI implementation for hmmbui1d scales well up to hundreds of processors, and hmmsearch scales
all right. The other search programs (hmmscan, phmmer, and jackhmmer) scale poorly, and probably shouldn’t
be used on more than tens of processors at most. Improving MPI scaling is one of our goals.

Using build directories

The configuration and compilation process from source supports using separate build directories, using
the GNU-standard VPATH mechanism. This allows you to maintain separate builds for different processors
or with different configuration/compilation options. All you have to do is run the configure script from the
directory you want to be the root of your build directory. For example:

> mkdir my-hmmer-build

> cd my-hmmer-build

> /path/to/hmmer/configure

> make

This assumes you have a make that supports VPATH. If your system’s make does not, you can always

install GNU make.

Makefile targets
all Builds everything. Same as just saying make.
check Runs automated test suites in both HMMER and the Easel library.

clean Removes all files generated by compilation (by make). Configuration (files generated by . /configure)
is preserved.

distclean Removes all files generated by configuration (by . /configure) and by compilation (by make).

Note that if you want to make a new configuration (for example, to try an MPI version by
./configure —-enable-mpi; make) you should do a make distclean (rather than a make
clean), to be sure old configuration files aren’t used accidentally.

Why is the output of ‘make’ so clean?

Because we're hiding what’s really going on with the compilation with a pretty wrapper. If you want to see
what the command lines really look like, in all their ugly glory, pass a v=1 option (V for “verbose”) to make,
asin:

> make V=1

What gets installed by ‘'make install’, and where?

HMMER'’s 'make install’ generally follows the GNU Coding Standards and the Filesystem Hierarchy Stan-
dard. The top-level Makefile has variables that specify five directories where make install will install

things:
Variable What
bindir All HMMER programs
libdir libhmmer.a

includedir hmmer.h
manldir All HMMER man pages
pdfdir Userguide.pdf
These variables are constructed from some other variables, in accordance with the GNU Coding Stan-
dards. All of these variables are at the top of the top-level Makefile. Their defaults are as follows:

15

Variable Default

prefix /usr/local
exec_prefix Sprefix

bindir Sexec_prefix/bin
libdir Sexecprefix/1lib
includedir Sprefix/include
datarootdir S$prefix/share
mandir $datarootdir/man
manldir Smandir/manl

The best way to change these defaults is when you use . /configure, and the most important variable
to consider changing is --prefix. For example, if you want to install HMMER in a directory hierarchy all of
its own, you might want to do something like:

> ./configure —--prefix /usr/local/hmmer

That would keep HMMER out of your system-wide directories like /usr/l1ocal/bin, which might be
desirable. Of course, if you do it that way, you'd also want to add /usr/local/hmmer/bin t0 your $PATH,
/usr/local/hmmer/share/man tO your $SMANPATH, etc.

These variables only affect make install. HMMER executables have no pathnames compiled into
them.

Staged installations in a buildroot, for a packaging system

HMMER’s make install supports staged installations, accepting the traditional pEsTDIR variable that
packagers use to specify a buildroot. For example, you can do:
> make DESTDIR=/rpm/tmp/buildroot install

Workarounds for some unusual configure/compilation problems

Configuration or compilation fails when trying to use a separate build directory. If you try to build
in a build tree (other than the source tree) and you have any trouble in configuration or compilation, try just
building in the source tree instead. Some make versions don’t support the VPATH mechanism needed to
use separate build trees. Another workaround is to install GNU make.

Configuration fails, complaining that the CFLAGS don’t work. Our configure script uses an Autoconf
macro, Ax_CC_MAXOPT, that tries to guess good optimization flags for your compiler. In very rare cases, we've
seen it guess wrong. You can always set crL.aGs yourself with something like:

> ./configure CFLAGS=-0

Configuration fails, complaining “no acceptable grep could be found”. We've seen this happen on
our Sun Sparc/Solaris machine. It's a known issue in GNU autoconf. You can either install GNU grep, or
you can insist to . /configure that the Solaris grep (or whatever grep you have) is ok by explicitly setting
GREP:

> ./configure GREP=/usr/xpg4/bin/grep

Configuration warns that it’s using the “dummy” implementation and H3 is going to be very slow.
This is what you get if your system has a processor that we don'’t yet support with a fast vector-parallel im-
plementation. We currently support Intel/AMD compatible processors and PowerPC compatible processors.
H3 will revert to a portable but slow version on other processors.

16

Many ‘make check’ tests fail. We have one report of a system that failed to link multithread-capable
system C libraries correctly, and instead linked to one or more serial-only libraries.® We've been unable to
reproduce the problem here, and are not sure what could cause it — we optimistically believe it's a messed-
up system instead of our fault. If it does happen, it screws all kinds of things up with the multithreaded
implementation. A workaround is to shut threading off:
> ./configure --disable-threads

This will compile code won’t parallelize across multiple cores, of course, but it will still work fine on a

single processor at a time (and MPI, if you build with MPI enabled).

3The telltale phenotype of this failure is to configure with debugging flags on and recompile, run one of the failed unit test drivers
(such as easel/easel_utest) yourself and let it dump core; and use a debugger to examine the stack trace in the core. If it's
failed in __errno_location (), it'’s linked a non-thread-capable system C library.

17

3 Tutorial

Here’s a tutorial walk-through of some small projects with HMMER. This should suffice to get you started
on work of your own, and you can (at least temporarily) skip the rest of the Guide, such as all the nitty-gritty
details of available command line options.

The programs in HMMER

Build models and align sequences (DNA or protein)

hmmbuild Build a profile HMM from an input multiple alignment.
hmmalign Make a multiple alignment of many sequences to a common profile HMM.

Search protein queries against protein database

phmmer Search a single protein sequence against a protein sequence database. (BLASTP-like)

jackhmmer Iteratively search a protein sequence against a protein sequence database. (PSIBLAST-like)

hmmsearch Search a protein profile HMM against a protein sequence database.
hmmscan Search a protein sequence against a protein profile HMM database.
hmmpgmd Search daemon used for hmmer.org website.

Search DNA queries against DNA database

nhmmer Search a DNA sequence, alignment, or profile HMM against a DNA sequence database. (BLASTN-like)

nhmmscan Search a DNA sequence against a DNA profile HMM database.

Other utilities

alimask Modify alignment file to mask column ranges.

hmmconvert Convert profile formats to/from HMMERS format.

hmmemit Generate (sample) sequences from a profile HMM.

hmmfetch Get a profile HMM by name or accession from an HMM database.
hmmpress Format an HMM database into a binary format for hmmscan.
hmmstat Show summary statistics for each profile in an HMM database.

The quadrumvirate of hmmbuild/hmmsearch/hmmscan/hmmalign is the core functionality for protein do-
main analysis and annotation pipelines, for instance using profile databases like Pfam or SMART.

The phmmer and jackhmmer programs search a single protein sequence against a protein sequence
database, akin to BLASTP and PSIBLAST, respectively. (Internally, they just produce a profile HMM from
the query sequence, then run HMM searches.)

The pair nhmmer/nhmmscan are new to HMMERS3.1. The program nhmmer can search against a DNA
sequence database with a query of a prebuilt HMM (built using hmmbuild), @ multiple sequence alignment,
or a single sequence. The program nhmmscan can search an HMM database with a DNA sequence query.

The program hmmpgmd is also new to HMMERS.1. It is the daemon that we use internally for the hm-
mer.org web server, and essentially stands in front of the protein search tools phmmer, hmmsearch, and
hmmscan. As a daemon, it starts up, loads the target database into memory, then performs searches
against that database as requested by client programs.

In the Tutorial section, we’ll show examples of running each of these programs, using examples in the
tutorial/ subdirectory of the distribution.

18

Supported formats

HMMER can usually automatically detect the format of a multiple sequence alignment, for example given to
hmmbuild or as the query to nhmmer. To override autodetection, specify —~-informat afa on the command
line of any program that reads an input alignment.

HMMER can also usually detect the format of an unaligned sequence file, for example given as the target
database to one of the search programs, or as input to hmmalign. Autodetection can be overridden with
program-specifc flags, for example specifying --t format afa on the command line of search programs.

See man-pages for program-specific lists of accepted formats.

Files used in the tutorial

The subdirectory /tutorial in the HMMER distribution contains the files used in the tutorial, as well as a
number of examples of various file formats that HMMER reads. The important files for the tutorial are:

globins4.sto An example alignment of four globin sequences, in Stockholm format. This align-
ment is a subset of a famous old published structural alignment from Don Bashford
(Bashford et al., 1987).

globins4.hmm An example profile HMM file, built from globins4.sto, in HMMERS3 ASCII text
format.

globins4.out An example hmmsearch output file that results from searching the globins4.hmm
against UniProt 15.7.

globins45.£fa A FASTA file containing 45 unaligned globin sequences.

£n3.sto Anexample alignment of 106 fibronectin type Ill domains. This is the Pfam 22.0 £n3
seed alignment. It provides an example of a Stockholm format with more complex
annotation. We’'ll also use it for an example of hmmsearch analyzing sequences
containing multiple domains.

£n3.hmm A profile HMM created from £n3.sto by hmmbuild.

7LESS DROME A FASTA file containing the sequence of the Drosophila Sevenless protein, a recep-
tor tyrosine kinase whose extracellular region is thought to contain seven fibronectin
type Il domains.

£n3.out Output of hmmsearch fn3.hmm 7LESS_DROME.
Pkinase.sto The Pfam 22.0 Pkinase seed alignment of protein kinase domains.
Pkinase.hmm A profile HMM created from pkinase.sto by hmmbuild.

minifam An example HMM flatfile database, containing three models: giobins4, £n3, and
Pkinase.

minifam.h3{m, i, £,p} Binary compressed files corresponding to minifam, produced by hmmpress.

HBB HUMAN A FASTA file containing the sequence of human g—hemoglobin, used as an exam-
ple query for phmmer and jackhmmer.

MADE1.sto An example alignment of 1997 instances of the MADE1 transposable element fam-
ily. This is the Dfam 1.1 maDE1 seed alignment. We’ll use it for an example of using
nhmmer to search a DNA database.

19

MaDE1.hmm A profile HMM created from MaDE1 . sto by hmmbui1d with default parameters (note:
this model differs from the MADE1 model found in DFAM, which is built with more.

dna_target.fa A FASTA file containing 330000 bases extracted from human chromosome 1, in
which four MADE1 instances are found. This is used as the example database for

nhmmer and nhmmscan.

Searching a protein sequence database with a single protein profile HMM

Step 1: build a profile HMM with hmmbuild

HMMER starts with a multiple sequence alignment file that you provide. The format can usually be au-
todetected, with accepted formats described above. The file tutorial/globins4.sto is an example of a
simple Stockholm file. It looks like this:

STOCKHOLM 1.0

HBB_HUMAN VHLTPEEKSAVTALWGKV. .. .NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVL
HBA_HUMAN VLSPADKTNVKAAWGKVGA. . HAGEYGAEALERMFLSFPTTKTYFPHF .DLS. HGSAQVKGHGKKVA
MYG_PHYCA VLSEGEWQLVLHVWAKVEA. .DVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKHGVTVL
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS..TYETSGVDILVKFFTSTPAAQEFFPKFKGLTTADQLKKSADVRWHAERII
HBB_HUMAN GAFSDGLAHL...D..NLKGTFATLSELHCDKL. . HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANAL
HBA_HUMAN DALTNAVAHV...D..DMPNALSALSDLHAHKL. .RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVL
MYG_PHYCA TALGAILKK....K.GHHEAELKPLAQSHATKH. .KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDI
GLB5_PETMA NAVNDAVASM. .DDTEKMSMKLRDLSGKHAKSF . .QVDPQYFKVLAAVIADTVAAG. DAGFEKLMSMICILL
HBB_HUMAN AHKYH......

HBA_HUMAN TSKYR......

MYG_PHYCA AAKYKELGYQG

GLB5_PETMA RSAY.......

//

Most popular alignment formats are similar block-based formats, and can be turned into Stockholm
format with a little editing or scripting. Don’t forget the # sTtockroLM 1.0 line at the start of the alignment,
nor the // at the end. Stockholm alignments can be concatenated to create an alignment database flatfile
containing many alignments.

The hmmbui1d command builds a profile HMM from an alignment (or HMMs for each of many alignments
in a Stockholm file), and saves the HMM(s) in a file. For example, type:

> hmmbuild globins4.hmm tutorial/globins4.sto
and you’ll see some output that looks like:

e # W

input alignment file:
output HMM file:

hmmbuild ::
HMMER 3.1
Copyright
Freely distributed under the GNU General Public License (GPLv3).

profile HMM construction from multiple sequence alignments
(February 2013); http://hmmer.org/

(C) 2011 Howard Hughes Medical Institute.

globins4.sto
globins4.hmm

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
idx name nseq alen mlen eff nseq re/pos description
,,
1 globins4 4 171 149 0.96 0.589

CPU time:

0.24u 0.00s 00:00:00.24 Elapsed:

00:00:00.27

If your input file had contained more than one alignment, you'd get one line of output for each model. For
instance, a single hmmbuild command suffices to turn a Pfam seed alignment flatfile (such as pfam-a. seed)
into a profile HMM flatfile (such as pfam.hmm).

The information on these lines is almost self-explanatory. The globins4 alignment consisted of 4 se-
quences with 171 aligned columns. HMMER turned it into a model of 149 consensus positions, which

20

means it defined 22 gap-containing alignment columns to be insertions relative to consensus. The 4 se-
quences were only counted as an “effective” total sequence number (eff_nseq) of 0.96. The model ended
up with a relative entropy per position ((re/pos; information content) of 0.589 bits.

The new HMM was saved t0 globins4.hmm. If you were to look at this file (and you don’t have to —it’s
intended for HMMER’s consumption, not yours), you'd see something like:

HMMER3/f [3.1 | February 2013]

NAME globins4

LENG 149
ALPH amino
RF no
MM no
CONS yes
Cs no
MAP yes

DATE Thu Feb 14 16:44:36 2013

NSEQ 4
EFFN 0.964844
CKSUM 2027839109

STATS LOCAL MSV -9.9014 0.70957
STATS LOCAL VITERBI -10.7224 0.70957
STATS LOCAL FORWARD -4.1637 0.70957
HMM A C D E F G H I K L M
m->m m—>1i m->d i->m i->1 d->m d->d
COMPO 2.36553 4.52577 2.96709 2.70473 3.20818 3.02239 .41069 .90041 .55332 .35210 .67329
2.68640 4.42247 2.77497 2.73145 3.46376 2.40504 .72516 .29302 .67763 . 69377 .24712
0.57544 1.78073 1.31293 1.75577 0.18968 0.00000 *
1 1.70038 4.17733 3.76164 3.36686 3.72281 3.29583 .27570 .40482 .29230 .54324 .63799
2.68618 4.42225 2.77519 2.73123 3.46354 2.40513 .72494 .29354 .67741 .69355 .24690
0.03156 3.86736 4.58970 0.61958 0.77255 0.34406 .23405
149 2.92198 5.11574 3.28049 2.65489 4.47826 3.59727 .51142 .88373 .57593 .35205 .19259
2.68634 4.42241 2.77536 2.73098 3.46370 2.40469 .72511 .29370 . 67757 .69331 .24706
0.22163 1.61553 x 1.50361 0.25145 0.00000 *

//

The HMMER ASCII save file format is defined in Section 8.

Step 2: search the sequence database with hmmsearch

Presumably you have a sequence database to search. Here we’ll use the UniProt 201302 Swiss-Prot
FASTA format flatfile (not provided in the tutorial, because of its large size), uniprot_sprot.fasta. If
you don’t have a sequence database handy, run your example search against tutorial/globins45. fa
instead, which is a FASTA format file containing 45 globin sequences.

hmmsearch accepts any FASTA file as target database input. It also accepts EMBL/UniProt text format,
and Genbank format. It will automatically determine what format your file is in; you don’t have to say. An
example of searching a sequence database with our globins4.hmm model would look like:

> hmmsearch globins4.hmm uniprot_sprot.fasta > globins4.out

Depending on the database you search, the output file globins4.out should look more or less like the
example of a UniProt search output provided in tutorial/globins4.out.

The first section is the header that tells you what program you ran, on what, and with what options:

hmmsearch :: search profile(s) against a sequence database

HMMER 3.1 (February 2013); http://hmmer.org/

Copyright (C) 2011 Howard Hughes Medical Institute.

Freely distributed under the GNU General Public License (GPLv3).

query HMM file: globins4.hmm

target sequence database: uniprot_sprot.fasta

per-seq hits tabular output: globins4.tbl

per-dom hits tabular output: globins4.domtbl

number of worker threads: 2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Query: globins4 [M=149]

Scores for complete sequences (score includes all domains) :

21

.19812
.90369

.55099
.90347

.10178
.90363

The second section is the sequence top hits list. It is a list of ranked top hits (sorted by E-value, most

significant hit first), formatted in a BLAST-like style:

—-—- full sequence —--- —-— best 1 domain --- —#dom—
E-value score bias E-value score bias exp N Sequence

6.5e-65 222.7 3.2 7.2e-65 222.6 3.2 1.0 1 sp|P02185|MYG_PHYMC
3.3e-63 217.2 0.1 3.7e-63 217.0 0.1 1.0 1 sp|P02024|HBB_GORGO
4.9e-63 216.6 0.0 5.4e-63 216.5 0.0 1.0 1 sp|P68871|HBB_HUMAN
4.9e-63 216.6 0.0 5.4e-63 216.5 0.0 1.0 1 sp|P68872|HBB_PANPA
4.9e-63 216.6 0.0 5.4e-63 216.5 0.0 1.0 1 sp|P68873|HBB_PANTR
7e-63 216.1 3.0 7.7e-63 216.0 3.0 1.0 1 sp|P02177|MYG_ESCGI

Description

Myoglobin OS=Physeter macrocephalus GN
Hemoglobin subunit beta 0S=Gorilla gor
Hemoglobin subunit beta OS=Homo sapien
Hemoglobin subunit beta 0S=Pan paniscu
Hemoglobin subunit beta 0S=Pan troglod
Myoglobin OS=Eschrichtius gibbosus GN=

The last two columns, obviously, are the name of each target sequence and optional description.

The most important number here is the first one, the sequence E-value. This is the statistical significance
of the match to this sequence: the number of hits we’d expect to score this highly in a database of this
size if the database contained only nonhomologous random sequences. The lower the E-value, the more
significant the hit.

The E-value is based on the sequence bit score, which is the second number. This is the log-odds score
for the complete sequence. Some people like to see a bit score instead of an E-value, because the bit score
doesn’t depend on the size of the sequence database, only on the profile HMM and the target sequence.

The next number, the bias, is a correction term for biased sequence composition that has been applied
to the sequence bit score.” For instance, for the top hit myc_pryca that scored 222.7 bits, the bias of 3.2
bits means that this sequence originally scored 225.9 bits, which was adjusted by the slight 3.2 bit biased-
composition correction. The only time you really need to pay attention to the bias value is when it’s large,
on the same order of magnitude as the sequence bit score. Sometimes (rarely) the bias correction isn’t
aggressive enough, and allows a non-homolog to retain too much score. Conversely, the bias correction
can be too aggressive sometimes, causing you to miss homologs. You can turn the biased-composition
score correction off with the ——nonu112 option (and if you're doing that, you may also want to set —-nobias,
to turn off another biased composition step called the bias filter, which affects which sequences get scored
at all).

The next three numbers are again an E-value, score, and bias, but only for the single best-scoring do-
main in the sequence, rather than the sum of all its identified domains. The rationale for this isn’t apparent
in the globin example, because all the globins in this example consist of only a single globin domain. So
let’s set up a second example, using a model of a single domain that's commonly found in multiple domains
in a single sequence. Build a fibronectin type Ill domain model using the tutorial/fn3.sto alignment (this
happens to be a Pfam seed alignment; it's a good example of an alignment with complex Stockholm anno-
tation). Then use that model to analyze the sequence tutorial/7LESS_DROME, the Drosophila Sevenless
receptor tyrosine kinase:

> hmmbuild £n3.hmm tutorial/fn3.sto
> hmmsearch fn3.hmm tutorial/7LESS DROME > fn3.out

An example of what that output file will look like is provided in tutorial/fn3.out. The sequence top

hits list says:

—-—— full sequence -—-— --— best 1 domain --- —#dom~—
E-value score bias E-value score bias exp N Sequence Description
1.9e-57 178.0 0.4 1.2e-16 47.2 0.9 9.4 9 TJTLESS_DROME RecName: Full=Protein sevenless;

OK, now let’s pick up the explanation where we left off. The total sequence score of 178.0 sums up
all the fibronectin Ill domains that were found in the 71.Ess_DrRoME sequence. The “single best dom” score
and E-value are the bit score and E-value as if the target sequence only contained the single best-scoring
domain, without this summation.

The idea is that we might be able to detect that a sequence is a member of a multidomain family because
it contains multiple weakly-scoring domains, even if no single domain is solidly significant on its own. On

"The method that HMMER uses to compensate for biased composition is unpublished. We will write it up when there’s a chance.

22

the other hand, if the target sequence happened to be a piece of junk consisting of a set of identical internal
repeats, and one of those repeats accidentially gives a weak hit to the query model, all the repeats will sum
up and the sequence score might look “significant” (which mathematically, alas, is the correct answer: the
null hypothesis we’re testing against is that the sequence is a random sequence of some base composition,
and a repetitive sequence isn’t random).

So operationally:

e if both E-values are significant (<< 1), the sequence is likely to be homologous to your query.

e if the full sequence E-value is significant but the single best domain E-value is not, the target sequence
is probably a multidomain remote homolog; but be wary, and watch out for the case where it's just a
repetitive sequence.

OK, the sharp eyed reader asks, if that's so, then why in the globin4 output (all of which have only a
single domain) do the full sequence bit scores and best single domain bit scores not exactly agree? For
example, the top ranked hit, myG_pryca (sperm whale myoglobin, if you're curious) has a full sequence score
of 222.7 and a single best domain score of 222.6. What's going on? What'’s going on is that the position and
alignment of that domain is uncertain — in this case, only very slightly so, but nonetheless uncertain. The full
sequence score is summed over all possible alignments of the globin model to the myGc_pHYCA Sequence.
When HMMER identifies domains, it identifies what it calls an envelope bounding where the domain’s
alignment most probably lies. (More on this later, when we discuss the reported coordinates of domains
and alignments in the next section of the output.) The “single best dom” score is calculated after the domain
envelope has been defined, and the summation is restricted only to the ensemble of possible alignments
that lie within the envelope. The fact that the two scores are slightly different is therefore telling you that
there’s a small amount of probability (uncertainty) that the domain lies somewhat outside the envelope
bounds that HMMER has selected.

The two columns headed #doms are two different estimates of the number of distinct domains that the
target sequence contains. The first, the column marked exp, is the expected number of domains according
to HMMER's statistical model. It’s an average, calculated as a weighted marginal sum over all possible
alignments. Because it’s an average, it isn’t necessarily a round integer. The second, the column marked
N, is the number of domains that HMMER’s domain postprocessing and annotation pipeline finally decided
to identify, annotate, and align in the target sequence. This is the number of alignments that will show up in
the domain report later in the output file.

These two numbers should be about the same. Rarely, you might see that they’re wildly different, and
this would usually be a sign that the target sequence is so highly repetitive that it's confused the HMMER
domain postprocessors. Such sequences aren't likely to show up as significant homologs to any sensible
query in the first place.

The sequence top hits output continues until it runs out of sequences to report. By default, the report
includes all sequences with an E-value of 10.0 or less.

Then comes the third output section, which starts with

Domain annotation for each sequence (and alignments):

Now for each sequence in the top hits list, there will be a section containing a table of where HMMER
thinks all the domains are, followed by the alignment inferred for each domain. Let’s use the fn3 vs.
7LESS_DROME example, because it contains lots of domains, and is more interesting in this respect than the

23

globin4 output. The domain table for 7LEss_DroOME l00Ks like:

>> 7TLESS_DROME RecName: Full=Protein sevenless; EC=2.7.10.1;
score bias c¢-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc
12 -1.3 0.0 0.17 0.17 61 74 396 409 395 411 .. 0.85
2! 40.7 0.0 1.3e-14 1.3e-14 2 84 . 439 520 . 437 521 .. 0.95
3! 14.4 0.0 2e-06 2e-06 13 85 .. 836 913 .. 826 914 .. 0.73
4! 5.1 0.0 0.0016 0.0016 10 36 .. 1209 1235 .. 1203 1259 .. 0.82
5! 24.3 0.0 1.7e-09 1.7e-09 14 80 .. 1313 1380 .. 1304 1386 .. 0.82
6 2 0.0 0.0 0.063 0.063 58 72 .. 1754 1768 .. 1739 1769 .. 0.89
7! 47.2 0.9 1.2e-16 1.2e-16 1 85 [. 1799 1890 .. 1799 1891 .. 0.91
8 ! 17.8 0.0 1.8e-07 1.8e-07 6 74 .. 1904 1966 .. 1901 1976 .. 0.90
9 ! 12.8 0.0 6.6e-06 6.6e-06 1 86 [] 1993 2107 .. 1993 2107 .. 0.89

Domains are reported in the order they appear in the sequence, not in order of their significance.

The ' or 2 symbol indicates whether this domain does or does not satisfy both per-sequence and
per-domain inclusion thresholds. Inclusion thresholds are used to determine what matches should be
considered to be “true”, as opposed to reporting thresholds that determine what matches will be reported
(often including the top of the noise, so you can see what interesting sequences might be getting tickled by
your search). By default, inclusion thresholds usually require a per-sequence E value of 0.01 or less and a
per-domain conditional E-value of 0.01 or less (except jackhmmer, which requires a more stringent 0.001
for both), and reporting E-value thresholds are set to 10.0.

The bit score and bias values are as described above for sequence scores, but are the score of just one
domain’s envelope.

The first of the two E-values is the conditional E-value. This is an odd number, and it's not even clear
we’re going to keep it. Pay attention to what it means! It is an attempt to measure the statistical significance
of each domain, given that we've already decided that the target sequence is a true homolog. It is the
expected number of additional domains we’'d find with a domain score this big in the set of sequences
reported in the top hits list, if those sequences consisted only of random nonhomologous sequence outside
the region that sufficed to define them as homologs.

The second number is the independent E-value: the significance of the sequence in the whole database
search, if this were the only domain we had identified. It's exactly the same as the “best 1 domain” E-value
in the sequence top hits list.

The different between the two E-values is not apparent in the 7LEss_DRoOME example because in both
cases, the size of the search space as 1 sequence. There’s a single sequence in the target sequence
database (that’s the size of the search space that the independent/best single domain E-value depends
on). There’s one sequence reported as a putative homolog in the sequence top hits list (that’s the size of
the search space that the conditional E-value depends on). A better example is to see what happens when
we search UniProt (201302 contains 539165 sequences) with the £n3 model:

> hmmsearch fn3.hmm uniprot_sprot.fasta

(If you don’t have UniProt and can’t run a command like this, don’t worry about it - I'll show the relevant

bits here.) Now the domain report for 7L.Ess_DroME looks like:

score Dbias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc
1! 40.7 0.0 9.6e-12 6.9e-09 2 84 439 520 437 521 0.95
2! 14.4 0.0 0.0015 1.1 13 85 836 913 826 914 0.73
37 5.1 0.0 1.2 8.6e+02 10 36 1209 1235 1203 1259 0.82
4! 24.3 0.0 1.3e-06 0.00091 14 80 1313 1380 1304 1386 0.82
5 ! 47.2 0.9 8.8e-14 6.3e-11 1 85 [1799 1890 1799 1891 0.91
6 ! 17.8 0.0 0.00014 0.099 6 74 1904 1966 1901 1976 0.90
7! 12.8 0.0 0.005 3.5 1 86 [] 1993 2107 1993 2107 0.89

Notice that almost everything’s the same (it's the same target sequence, after all) except for what hap-
pens with E-values. The independent E-value is calculated assuming a search space of all 539165 se-
quences. For example, look at the highest scoring domain (domain 5 here; domain 7 above). When we
only looked at a single sequence, its score of 47.2 bits has an E-value of 1.2e-16. When we search a
database of 539165 sequences, a hit scoring 47.2 bits would be expected to happen 539165 times as of-
ten: 1.2e-16 x 539165 = 6.47e-11 (it's showing 6.3e-11 because of roundoff issues; the 1.2e-16 in fact isn’t

24

exactly 1.2e-16 inside HMMER). In this UniProt search, 754 sequences were reported in the top hits list
(with E-values < 10). If we were to assume that all 754 are true homologs, x out the domain(s) that made
us think that, and then went looking for additional domains in those 754 sequences, we'd be searching a
smaller database of 754 sequences: the expected number of times we'd see a hit of 47.2 bits or better is
now 1.2e-16 x 754 = 9.0e-14. That's where the conditional E-value (c-Evalue) is coming from (subject to
rounding error).

Notice that a couple of domains disappeared in the UniProt search, because now, in this larger search
space size, they’re not significant. Domain 1 (the one with the score of -1.3 bits) got a conditional E-value
of 0.17 x 754 = 128, and domain 6 (with a bit score of 0.0) got a c-Evalue of 0.063 x 754 = 47.5. These fail
the default reporting threshold of 10.0. The domain with a score of 5.1 bits also shifted from being above to
below the default inclusion thresholds, so now it's marked with a » instead of a !.

Operationally:

e If the independent E-value is significant (<< 1), that means that even this single domain by itself is
such a strong hit that it suffices to identify the sequence as a significant homolog with respect to the
size of the entire original database search. You can be confident that this is a homologous domain.

e Once there’s one or more high-scoring domains in the sequence already, sufficient to decide that
the sequence contains homologs of your query, you can look (with some caution) at the conditional
E-value to decide the statistical significance of additional weak-scoring domains.

In the UniProt output, for example, we'd be pretty sure of four of the domains (1, 4, 5, and maybe 6),
each of which has a strong enough independent E-value to declare 71.Ess_broME to be an fnlll-domain-
containing protein. Domains 2 and 7 wouldn’t be significant if they were all we saw in the sequence, but
once we decide that 7LEss_DROME contains fn3 domains on the basis of the other hits, their conditional
E-values indicate that they are probably also fn3 domains too. Domain 3 is too weak to be sure of, from this
search alone, but would be something to pay attention to.

The next four columns give the endpoints of the reported local alignment with respect to both the query
model (“hmm from” and “hmm to0”) and the target sequence (“ali from” and “ali t0”).

It's not immediately easy to tell from the “to” coordinate whether the alignment ended internally in the
query or target, versus ran all the way (as in a full-length global alignment) to the end(s). To make this more
readily apparent, with each pair of query and target endpoint coordinates, there’s also a little symbology.

. meaning both ends of the alignment ended internally, and [1 means both ends of the alignment were
full-length flush to the ends of the query or target, and [. and .1 mean only the left or right end was
flush/full length.

The next two columns (“env from” and “env t0”) define the envelope of the domain’s location on the
target sequence. The envelope is almost always a little wider than what HMMER chooses to show as
a reasonably confident alignment. As mentioned earlier, the envelope represents a subsequence that
encompasses most of the posterior probability for a given homologous domain, even if precise endpoints
are only fuzzily inferrable. You’ll notice that for higher scoring domains, the coordinates of the envelope and
the inferred alignment will tend to be in tighter agreement, corresponding to sharper posterior probability
defining the location of the homologous region.

Operationally, we would use the envelope coordinates to annotate domain locations on target se-
quences, not the alignment coordinates. However, be aware that when two weaker-scoring domains are
close to each other, envelope coordinates can and will overlap, corresponding to the overlapping uncer-
tainty of where one domain ends and another begins. In contrast, alignment coordinates generally do not
overlap (though there are cases where even they will overlap?).

The last column is the average posterior probability of the aligned target sequence residues; effectively,
the expected accuracy per residue of the alignment.

2Not to mention one (mercifully rare) bug/artifact that we're betting is so unusual that testers don’'t even see an example of it — but
we'll see.

25

For comparison, current UniProt consensus annotation of Sevenless shows seven domains:

FT DOMAIN 311 431 Fibronectin type-III 1.
FT DOMAIN 436 528 Fibronectin type-III 2.
FT DOMAIN 822 921 Fibronectin type-III 3.
FT DOMAIN 1298 1392 Fibronectin type-III 4.
FT DOMAIN 1680 1794 Fibronectin type-III 5.
FT DOMAIN 1797 1897 Fibronectin type-III 6.
FT DOMAIN 1898 1988 Fibronectin type-III 7.

These domains are a pretty tough case to call, actually. HMMER fails to see anything significant over-
lapping two of these domains (311-431 and 1680-1794) in the UniProt search, though it sees a smidgen of
them when 71Ess_DROME alone is the target. HMMERS sees two new domains (1205-1235 and 1993-2098)
that UniProt currently doesn’t annotate, but these are pretty plausible domains (given that the extracellular
domain of Sevenless is pretty much just a big array of ~100aa fibronectin repeats.

Under the domain table, an “optimal posterior accuracy” alignment (Holmes, 1998) is computed within
each domain’s envelope, and displayed. For example, (skipping domain 1 because it's weak and uncon-
vincing), fibronectin Il domain 2 in your 71Ess_DROME output is shown as:

== domain 2 score: 40.7 bits; conditional E-value: 1.3e-14
———CEEEEEEECTTEEEEEEE--S..SS——SEEEEEEEETTTCCGCEEEEEETTTSEEEEES——-TT-EEEEEEEEEETTEE.E CS
fn3 2 saPenlsvsevtstsltlsWsppkdgggpitgYeveygekgegeewgevtvprtttsvtltglepgteYefrVgavngagegp 84
saP ++ + ++ 1 ++W p + +gpit+gY¥++++++++++ + e+ vpt s+ +++L++gt+Y++ + +nt++gegp
7LESS_DROME 439 SAPVIEHLMGLDDSHLAVHWHPGRFTNGPIEGYRLRLSSSEGNA-TSEQLVPAGRGSYIFSQLQAGTNYTLALSMINKQGEGP 520

7899900990000k kkhkkkhkkkhhkhkhkkkkhkkkkkhkk k%9008 | Ak hkkkhhhkkhkkkkhkhkkkkkkkkhkkkkkkxx*kxx*x9997 PP

The initial header line starts with a == as a little handle for a parsing script to grab hold of. We may put
more information on that line eventually.

If the model had any consensus structure or reference line annotation that it inherited from your multiple
alignment (#=GC ss_cons, #=GC RF annotation in Stockholm files), that information is simply regurgitated
as cs or rr annotation lines here. The £n3 model had a consensus structure annotation line.

The line starting with £n3 is the consensus of the query model. Capital letters represent the most con-
served (high information content) positions. Dots (.) in this line indicate insertions in the target sequence
with respect to the model.

The midline indicates matches between the query model and target sequence. A + indicates positive
score, which can be interpreted as “conservative substitution”, with respect to what the model expects at
that position.

The line starting with 7.Ess_DRoME is the target sequence. Dashes (-) in this line indicate deletions in
the target sequence with respect to the model.

The bottom line represents the posterior probability (essentially the expected accuracy) of each aligned
residue. A 0 means 0-5%, 1 means 5-15%, and so on; 9 means 85-95%, and a + means 95-100% posterior
probability. You can use these posterior probabilities to decide which parts of the alignment are well-
determined or not. You'll often observe, for example, that expected alignment accuracy degrades around
locations of insertion and deletion, which you'd intuitively expect.

You'll also see expected alignment accuracy degrade at the ends of an alignment — this is because
“alignment accuracy” posterior probabilities currently not only includes whether the residue is aligned to
one model position versus others, but also confounded with whether a residue should be considered to be
homologous (aligned to the model somewhere) versus not homologous at all.3

These domain table and per-domain alignment reports for each sequence then continue, for each se-
quence that was in the per-sequence top hits list.

Finally, at the bottom of the file, you’ll see some summary statistics. For example, at the bottom of the

31t may make more sense to condition the posterior probabilities on the assumption that the residue is indeed homologous: given
that, how likely is it that we’ve got it correctly aligned.

26

globins search output, you’ll find something like:

Internal pipeline statistics summary:

Query model (s) : 1 (149 nodes)

Target sequences: 539165 (191456931 residues searched)

Passed MSV filter: 20801 (0.03858); expected 10783.3 (0.02)

Passed bias filter: 17061 (0.0316434); expected 10783.3 (0.02)

Passed Vit filter: 2321 (0.0043048); expected 539.2 (0.001)

Passed Fwd filter: 1109 (0.00205688); expected 5.4 (le-05)

Initial search space (Z): 539165 [actual number of targets]

Domain search space (domZ): 1108 [number of targets reported over threshold]

CPU time: 6.50u 0.11ls 00:00:06.61 Elapsed: 00:00:02.59
Mc/sec: 11014.32
//

This gives you some idea of what’s going on in HMMER’s acceleration pipeline. You’ve got one query
HMM, and the database has 539,165 target sequences. Each sequence goes through a gauntlet of three
scoring algorithms called MSV, Viterbi, and Forward, in order of increasing sensitivity and increasing com-
putational requirement.

MSV (the “Multi ungapped Segment Viterbi” algorithm) essentially calculates the HMM equivalent of
BLAST’s sum score — an optimal sum of ungapped high-scoring alignment segments. Unlike BLAST, it
does this calculation directly, without BLAST’s word hit or hit extension step, using a SIMD vector-parallel
algorithm. By default, HMMER is configured to allow sequences with a P-value of < 0.02 through the
MSV score filter (thus, if the database contained no homologs and P-values were accurately calculated, the
highest scoring 2% of the sequences will pass the filter). Here, about 4% of the database got through the
MSV filter.

A quick check is then done to see if the target sequence is “obviously” so biased in its composition that
it's unlikely to be a true homolog. This is called the “bias filter”. If you don’t like it (it can occasionally be
overaggressive) you can shut it off with the -—nobias option. Here, 17061 sequences pass through the bias
filter.

The Viterbi filter then calculates a gapped optimal alignment score. This is a bit more sensitive than the
MSV score, but the Viterbi filter is about four-fold slower than MSV. By default, HMMERS3 lets sequences
with a P-value of < 0.001 through this stage. Here (because there’s a little over a thousand true globin
homologs in this database), much more than that gets through - 2321 sequences.

Then the full Forward score is calculated, which sums over all possible alignments of the profile to the
target sequence. The default allows sequences with a P-value of < 10~° through; 1109 sequences passed.

All sequences that make it through the three filters are then subjected to a full probabilistic analysis
using the HMM Forward/Backward algorithms, first to identify domains and assign domain envelopes; then
within each individual domain envelope, Forward/Backward calculations are done to determine posterior
probabilities for each aligned residue, followed by optimal accuracy alignment. The results of this step are
what you finally see on the output.

Recall the difference between conditional and independent E-values, with their two different search
space sizes. These search space sizes are reported in the statistics summary.

Finally, it reports the speed of the search in units of Mc/sec (million dynamic programming cells per
second), the CPU time, and the elapsed time. This search took about 2.59 seconds of elapsed (wall clock
time) (running with -—cpu 2 on two cores). That's in the same ballpark as BLAST. On the same machine,
also running dual-core, NCBI BLAST with one of these globin sequences took 2.3 seconds, and WU-BLAST
took 4.8 seconds.

Single sequence protein queries using phmmer

The phmmer program is for searching a single sequence query against a sequence database, much as
BLASTP Or FASTA would do. phmmer works essentially just like hmmsearch does, except you provide a query
sequence instead of a query profile HMM.

27

Internally, HMMER builds a profile HMM from your single query sequence, using a simple position-
independent scoring system (BLOSUMG62 scores converted to probabilities, plus a gap-open and gap-
extend probability).

The file tutorial/HBB_HUMAN is a FASTA file containing the human 5—globin sequence as an example
query. If you have a sequence database such as uniprot_sprot.fasta, make that your target database;
otherwise, use tutorial/globins45.fa as a small example:

> phmmer tutorial/HBB HUMAN uniprot_sprot.fasta
or
> phmmer tutorial/HBB_HUMAN tutorial/globins45.fa
Everything about the output is essentially as previously described for hmmsearch.

Iterative protein searches using jackhmmer

The jackhmmer program is for searching a single sequence query iteratively against a sequence database,
much as ps1-BLAST would do.

The first round is identical to a phmmer search. All the matches that pass the inclusion thresholds are
put in a multiple alignment. In the second (and subsequent) rounds, a profile is made from these results,
and the database is searched again with the profile.

Iterations continue either until no new sequences are detected or the maximum number of iterations is
reached. By default, the maximum number of iterations is 5; you can change this with the -~ option.

Your original query sequence is always included in the multiple alignments, whether or not it appears in
the database.* The “consensus” columns assigned to each multiple alignment always correspond exactly to
the residues of your query, so the coordinate system of every profile is always the same as the numbering
of residues in your query sequence, 1..L for a sequence of length L.

Assuming you have UniProt or something like it handy, here’s an example command line for a jackhmmer
search:

> jackhmmer tutorial/HBB_HUMAN uniprot_sprot.fasta

One difference from phmmer output you’ll notice is that jackhmmer marks “new” sequences with a +
and “lost” sequences with a -. New sequences are sequences that pass the inclusion threshold(s) in
this round, but didn’t in the round before. Lost sequences are the opposite: sequences that passed the
inclusion threshold(s) in the previous round, but have now fallen beneath (yet are still in the reported hits —
it's possible, though rare, to lose sequences utterly, if they no longer even pass the reporting threshold(s)).
In the first round, everything above the inclusion thresholds is marked with a +, and nothing is marked with

4If it is in the database, it will almost certainly be included in the internal multiple alignment twice, once because it's the query
and once because it’s a significant database match to itself. This redundancy won’t screw up the alignment, because sequences are
downweighted for redundancy anyway.

28

a -. For example, the top of this output looks like:

jackhmmer :: iteratively search a protein sequence against a protein database
HMMER 3.1 (February 2013); http://hmmer.org/
Copyright (C) 2011 Howard Hughes Medical Institute.
Freely distributed under the GNU General Public License (GPLv3).

query sequence file: HBB_HUMAN
target sequence database: uniprot_sprot.fasta
per-seq hits tabular output: hbb-jack.tbl
per-dom hits tabular output: hbb-jack.domtbl

Query: HBB_HUMAN [L=146
Description: Human beta hemoglobin.
Scores for complete sequences (score includes all domains):

—--- full sequence —--- -—— best 1 domain --- —#dom—

E-value score Dbias E-value score bias exp N Sequence

+ 3.3e-98 330.5 0.6 3.7e-98 330.3 0.6 1.0 1 sp|P68871|HBB_HUMAN
+ 3.3e-98 330.5 0.6 3.7e-98 330.3 0.6 1.0 1 sp|P68872|HBB_PANPA
+ 3.3e-98 330.5 0.6 3.7e-98 330.3 0.6 1.0 1 sp|P68873|HBB_PANTR
+ 9.5e-98 329.0 0.7 1.1e-97 328.8 0.7 1.0 1 sp|P02024|HBB_GORGO
+ 2.9e-96 324.2 0.5 3.2e-96 324.0 0.5 1.0 1 sp|P02025|HBB_HYLLA
+ 2.9e-95 320.9 0.6 3.2e-95 320.8 0.6 1.0 1 sp|P02032|HBB_SEMEN

Description

beta
beta
beta
beta
beta
beta

subunit
subunit
subunit
subunit
subunit
subunit

Hemoglobin
Hemoglobin
Hemoglobin
Hemoglobin
Hemoglobin
Hemoglobin

OS=Homo sapien
OS=Pan paniscu
OS=Pan troglod
0S=Gorilla gor
OS=Hylobates 1
OS=Semnopithec

That continues until the inclusion threshold is reached, at which point you see a tagline “inclusion thresh-

old” indicating where the threshold was set:

+ 0.00047 25.0 0.2 0.00055 24.8 0.2 1.0 1 spl|QOKIY5|MYG_KOGBR
+ 0.0006 24.6 0.0 0.00071 24.4 0.0 1.0 1 sp|P14399|MYG_MUSAN
777777 inclusion threshold —--—---—-—
0.001 23.9 0.3 0.011 20.5 0.3 2.0 1 spl|P81044|HBAZ_MACEU
0.0013 23.5 0.0 0.0017 23.2 0.0 1.1 1 sp|080405|LGB3_PEA

The domain output and search statistics are then shown

Myoglobin OS=Kogia breviceps GN=MB PE=
Myoglobin OS=Mustelus antarcticus GN=m

Hemoglobin subunit zeta (Fragments) OS
Leghemoglobin Lb120-1 OS=Pisum sativum

just as in phmmer. At the end of this first

iteration, you'll see some output that starts with ge (this is a simple tag that lets you search through the file

to find the end of one iteration and the beginning of another):

@@ New targets included: 935
@@ New alignment includes: 936 subsegs
@@ Continuing to next round.

(was 1), including original query

@@ Round: 2
@@ Included in MSA: 936 subsequences
@@ Model size: 146 positions

(query + 935 subsegs from 935 targets)

This (obviously) is telling you that the new alignment contains 936 sequences, your query plus 935
significant matches. For round two, it’s built a new model from this alignment. Now for round two, it fires off

what’s essentially an hmmsearch of the target database with this new model:

Scores for complete sequences (score includes all domains) :

—-—-- full sequence —-- -—— best 1 domain —--- —#dom-
E-value score Dbias E-value score Dbias exp N Sequence
7.5e-68 232.1 0.2 8.3e-68 232.0 0.2 1.0 1 sp|P02055|HBB_MELME
l.le-67 231.5 0.4 1.3e-67 231.4 0.4 1.0 1 sp|P81042|HBE_MACEU
1.3e-67 231.3 0.3 1.5e-67 231.1 0.3 1.0 1 sp|P15449|HBB_MELCA
1.9e-67 230.8 0.2 2.1le-67 230.6 0.2 1.0 1 sp|P68046|HBB_ODORO

Description

beta 0OS=Meles meles
epsilon OS=Macropus
beta 0S=Mellivora c
beta 0S=0Odobenus ro

subunit
subunit
subunit
subunit

Hemoglobin
Hemoglobin
Hemoglobin
Hemoglobin

If you skim down through this output, you'll start seeing newly included sequences marked with +’s, such

29

as:

9.4e-30 108.5 0.0 le-29 108.4 0.0 1.0 1 spl|Q9DEPO|MYG_CRYAN Myoglobin OS=Cryodraco antarcticus GN=
+ 1.4e-29 107.9 0.2 1.6e-29 107.8 0.2 1.0 1 sp|P14397|MYG_GALGA Myoglobin OS=Galeorhinus galeus GN=mb
2.4e-29 107.2 0.0 2.7e-29 107.0 0.0 1.0 1 sp|P02022|HBAM_LITCT Hemoglobin heart muscle subunit alpha-
+ 4.8e-29 106.2 0.1 5.3e-29 106.1 0.1 1.0 1 sp|P14398|MYG_GALJA Myoglobin OS=Galeorhinus japonicus GN=
1.9e-28 104.3 0.0 2.3e-28 104.0 0.0 1.0 1 sp|P09106|HBAT_PAPAN Hemoglobin subunit theta-1 OS=Papio an
3.7e-28 103.4 0.3 4.8e-28 103.0 0.3 1.0 1 sp|P80017|GLBD_CAUAR Globin D, coelomic 0OS=Caudina arenicol
4.1e-28 103.2 0.0 5.1e-28 102.9 0.0 1.0 1 sp|P0C227|GLB_NERAL Globin OS=Nerita albicilla PE=1 SV=1
3.1le-25 93.8 0.2 3.4e-25 93.7 0.2 1.0 1 sp|P18979|HBA1_UROHA Hemoglobin subunit alpha-1 (Fragment)
+ 4.2e-24 90.2 0.0 5e-24 89.9 0.0 1.0 1 splQ90W04 |NGB_TETNG Neuroglobin OS=Tetraodon nigroviridis
8.4e-24 89.2 0.0 le-23 89.0 0.0 1.0 1 spl|P59742|NGB1_ONCMY Neuroglobin-1 0OS=Oncorhynchus mykiss G
+ le-23 88.9 0.0 1.3e-23 88.7 0.0 1.0 1 sp|P59743|NGB2_ONCMY Neuroglobin-2 OS=Oncorhynchus mykiss G

It's unusual to see sequences get lost (and marked with -), but it can happen; it doesn’t happen in this
globin example.
After round 2, many more globin sequences have been found:
@@ New targets included: 172

@@ New alignment includes: 1110 subsegs (was 936), including original query
@@ Continuing to next round.

Qe

@@ Round: 3

@@ Included in MSA: 1110 subsequences (query + 1109 subsegs from 1107 targets)
@@ Model size: 146 positions

Qe

Because new sequences were included, it keeps going to round three, and then again to round four,
then again to round five. After round five, the search ends quietly because there’s a default maximum of
five iterations, and you get:

@@ New targets included: 1
@@ New alignment includes: 1151 subsegs (was 1149), including original query
//

In this example, round 5 results in an alignment with two new subsequences, a new hit (sp—Q09240—GLOB9_CAEEL),
and a second matching domain in a previously found hit (sp—P81044—HBAZ_MACEU). The final alignment
includes sequences from 1150 hits, with one hit (HBAZ_MACEU) contributing two matching domains.

That // marks the end of the results for one query.

Searching a DNA sequence database
Step 1: Optionally build a profile HMM with hmmbuild

This step is nearly idential to Step 1 for protein profile HMM. For the DNA example, type:
> hmmbuild MADEl.hmm tutorial/MADE1l.sto
and you’ll see some output that looks like:

hmmbuild :: profile HMM construction from multiple sequence alignments

HMMER 3.1 (February 2013); http://hmmer.org/

Copyright (C) 2011 Howard Hughes Medical Institute.

Freely distributed under the GNU General Public License (GPLv3).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

input alignment file: tutorial/MADEl.sto

output HMM file: MADE1L . hmm

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

idx name nseq alen mlen W eff_nseq re/pos description

1 MADE1 1997 1112 80 426 3.91 0.708 MADEl (MAriner Derived Element 1), a TcMar-Mariner DNA

CPU time: 0.15u 0.01ls 00:00:00.16 Elapsed: 00:00:00.20

Notice the new output column with the header “W”, which is only present when the input sequence
alignment is made up of DNA or RNA. This represents an upper bound on the length at which nhmmer

30

expects to find an instance of the family®. It is always larger than mlen, though the ratio of mlen to W
depends on the observed insert rate in the seed alignment. This length is used deep in the acceleration
pipeline, and modest changes are not expected to impact results, but larger values of W do lead to longer
run time. The value can be overridden with the —-w_length or --w_beta flags, at the risk of possibly missing
instances of the family that happen to be longer than W due to plentiful insertions.

Step 2: search the DNA sequence database with nhmmer

We'll use tutorial/dna_target.fa as the target sequence database. It is a FASTA format file containing
one 330Kb long DNA sequence extracted from human chromosome 1.

The program nhmmer accepts a target DNA sequence database in the same formats as hmmsearch (we
typically use FASTA). For the query, it accepts either an HMM file as produced above by hmmbuild, or a file
containing either one DNA sequence or an alignment of multiple DNA sequences.

If a sequence or alignment is used as query input, nhmmer internally produces the HMM for that align-
ment®, then searches with that model. The HMM produced in this way is automatically saved to disk; the
default file name is chosen by appending “.hmm” to the name of the sequence file name. This can be
overridden with the ——hmmout flag.

An example of searching a sequence database with our MADE1 . hmm model would look like:

> nhmmer MADEl.hmm tutorial/dna target.fa > MADEl.out

The output file MADE1 . out should look like the example provided in tutorial /MADEI . out.

This output is largely similar to that of hmmsearch. The key differences are that (1) each hit is not to
a full sequence in the target database, but a local alignment of the HMM to a subsequence of a full target
database sequence, and (2) there are no domains.

The first section is the header that tells you what program you ran, on what, and with what options, as
above.

The second section is the top hits list. It is a list of ranked top hits (sorted by E-value, most significant
hit first), formatted much like the hmmsearch output top hits list:

E-value score bias Sequence start end Description

4 humanchrl/239220001-239550000 302390 302466
0 humanchrl/239220001-239550000 302466 302390
.3 humanchrl/239220001-239550000 174456 174498
0 humanchrl1/239220001-239550000 174493 174456
shold —-————-

7

1.7 6.0 humanchr1/239220001-239550000 304074 304104

The table presents the hit E-value, sequence bit score, bias, Sequence and Description. See the section
above for hmmsearch for a description of these fields.

The “start” and “end” columns give, for each hit, the range in the target sequence at which the hit is
found. Note that “end” can be smaller than “start”, indicating a hit found on the reverse complement of the
target database sequence.

Note that one of the five reported hits falls below the inclusion threshold.

The observant reader will notice that the first two hits cover the same range of positions, one on the for-
ward strand (302390..302466), the other on the reverse (302466..302390). The next two hits likewise cover
a shared range. This happens because the MADE1 model is palindromic (the consensus is almost perfectly
s0), and highlights the important facts that (a) nhmmer searches on both strands of an input sequence, and
(b) this can sometimes lead to overlapping opposite-strand hits, which are not filtered.

Then comes the third output section, which starts with

Annotation for each hit (and alignments) :

5W is based on position-specific insert rates: only 1e — 7 of all sequences generated from the profile HMM will have length greater
than W.
6Using default hmmbuild parameters; if you want more control, explicitly built the model with hmmbuild.

31

For each hit in the top hits list, there will be a one-line table providing detailed information about the hit,
followed by the alignment inferred for the hit. The first entry from the Mabpe1 example above looks like:

>> humanchrl/239220001-239550000
score bias Evalue hmmfrom hmm to alifrom ali to envfrom env to sq len acc

! 39.0 7.4 8.4e-11 4 80 .] 302390 302466 .. 302387 302466 .. 330000 0.87

The bit score, bias value, Evalue, and acc are as described for hmmsearch, as is the choice of ! or »
symbols.

The next four columns give the endpoints of the reported local alignment with respect to both the query
model (“hmm from” and “hmm to”) and the target sequence (“ali from” and “ali to”). These are as described
in the section for nhmmsearch results, including the symbology used to recognize flush vs internal end points
in hits.

The next two columns (“env from” and “env t0”) also behave as described earlier for hmmsearch, defining
the envelope of the hit's location on the target sequence.

The “sq len” column indicates the full length of the target sequence, enabling simple calculation of the
proximity of a hit to the end of the target.

Under each one-line hit table is displayed the alignment inferred between the model and the hit envelope.
For example, the top hit from above is shown as:

Alignment:
score: 39.0 bits
cees RF
MADE1 4 ggttggtgcaaaagtaattgcggtttttgccattacttttaatgge....aaaaaccgcaattacttttgcace 73
ggt ggtgcaaaa aattg ggtttttgccatt cttttaat gc a aaa g a t ctttt cacc
humanchrl1/239220001-239550000 302390 GGTCGGTGCAAAATCAATTGTGGTTTTTGCCATTGCTTTTAATTGCttttA-AAA--GTA-ATGCTTTTACACC 302459

8O0k kkkkkhkkkkhkhhhhhkhkhkkkhkhkkkxkhkhkkhkkkkkkxx*x*955533.443,.334.4689%x**xx*** PP

XXXXXXX RF

MADE1 74 aacctaa 80
aa ctaa
humanchrl1/239220001-239550000 302460 AATCTAA 302466
*%99986 PP

Details of the alignment format are the same as for hmmsearch.
Finally, at the bottom of the file, you’ll see some summary statistics. For example, at the bottom of the
MADE1 search output, you'll find something like:

Internal pipeline statistics summary:

Query model (s) : 1 (80 nodes)

Target sequences: 1 (660000 residues searched)
Residues passing SSV filter: 61658 (0.0934); expected (0.02)
Residues passing bias filter: 45802 (0.0694); expected (0.02)
Residues passing Vit filter: 2443 (0.0037); expected (0.001)
Residues passing Fwd filter: 2217 (0.00336); expected (1le-05)
Total number of hits: 5 (0.000403)

CPU time: 0.05u 0.00s 00:00:00.05 Elapsed: 00:00:00.03
Mc/sec: 1760.00
//

This gives you some idea of what’s going on in nhmmer’s acceleration pipeline. You've got one query
HMM, and 660,000 residues were searched (there are 330,000 bases in the single sequence found in
the file; the search includes the reverse complement, doubling the search space). The sequences in the
database go through a gauntlet of three scoring algorithms called SSV, Viterbi, and Forward, in order of
increasing sensitivity and increasing computational requirement.

SSV (the “Single ungapped Segment Viterbi” algorithm) as used in nhmmer is closely related to the
MSV algorithm used in hmmsearch, in that it depends on ungapped alignment segments. The difference
lies in how those alignments are used. Using MSV, a sequence is either rejected or accepted in its entirety.
In the scanning-SSYV filter of nhmme r, €ach sequence in the database is scanned for high-scoring ungapped
alignment segments, and a window around each such segment is extracted (merging overlapping windows),

32

and passed on to the next stage. By default, nhmmer is configured to allow sequence segments with a P-
value of < 0.02 through the SSV score filter (thus, if the database contained no homologs and P-values
were accurately calculated, the highest scoring 2% of the sequence will pass the filter). Here, 61658 bases,
or about 9% of the database, got through the SSV filter.

The quick “bias filter” is then applied, as in hnmsearch. Here, 45802 bases, roughly 7% of the database
pass through the bias filter.

The Viterbi filter then calculates a gapped optimal alignment score for each window that survived the
earlier stages. This score is a closer approximation than the SSV score of the final score that the window
will achieve if it survives to final processing, but the Viterbi filter is about four-fold slower than SSV. By
default, nhmmer lets windows with a P-value of < 0.001 through this stage. Here, 2443 bases, about 0.4%
of the database gets through.

Then the full Forward score is calculated, which sums over all possible alignments of the profile to the
window. The default allows windows with a P-value of < 10~° through; 2217 bases passed.

All sequences that make it through these filters are then subjected to a full probabilistic analysis using
the HMM Forward/Backward algorithms, to identify hit envelopes, then determine posterior probabilities for
each aligned residue, followed by optimal accuracy alignment. The results of this step are what you finally
see on the output. The final number of hits and fractional coverage of the database is shown next. This
is typically smaller than the fraction of the database passing the Forward filter, as hit identification typically
trims windows down to a smaller envelope.

Finally, nnmmer reports the speed of the search in units of Mc/sec (million dynamic programming cells
per second), the CPU time, and the elapsed time. This search took about 0.03 seconds of elapsed (wall
clock time).

There is not currently a DNA analog to jackhmmer.

Searching a profile HMM database with a query sequence

In some cases, rather than wishing to search a single model against a collection of sequences, you may
wish to annotate all the instances of a collection of HMMs found in a single sequence.

In the case of proteins, hmmscan is for annotating all the different known/detectable domains in a given
protein sequence. It takes a single query sequence and an HMM database as input. The HMM database
might be Pfam, SMART, or TIGRFams, for example, or another collection of your choice.

In the case of DNA, the same purpose is met with nhmmscan. In this case, the HMM database might
be Dfam (a database of HMMs for transposable element families), or a collection of conserved regulatory
elements.

Here, we show an example of using hmmscan, which, you will see, produces output very much like that
of hmmsearch. We omit details of running nhmmscan - it is run in the same way as hmmscan, and its output
matches that of nhmmer.

Step 1: create an HMM database flatfile

An HMM “database” flatfile is simply a concatenation of individual HMM files. To create a database flat-
file, you can either build individual HMM files and concatenate them, or you can concatenate Stockholm
alignments and use hmmbui1d to build an HMM database of all of them in one command.
Let's create a tiny database called minifam containing models of globin, fn3, and Pkinase (protein
kinase) domains by concatenating model files:
> hmmbuild globins4.hmm tutorial/globins4d.sto
> hmmbuild £n3.hmm tutorial/fn3.sto
> hmmbuild Pkinase.hmm tutorial/Pkinase.sto
> cat globins4.hmm fn3.hmm Pkinase.hmm > minifam
We’'ll use minifam for our examples in just a bit, but first a few words on other ways to build HMM
databases, especially big ones. The file tutorials/minifam is the same thing, if you want to just use that.

33

Alternatively, you can concatenate Stockholm alignment files together (as Pfam does in its big pfam-a. seed

and pfam-a. full flatfiles) and use hmmbui1d to build HMMs for all the alignments at once. This won’t work
properly for our tutorial alignments, because the globins4.sto alignment doesn’t have an #=Gr 1D anno-
tation line giving a name to the globins4 alignment, so hmmbui1d wouldn’t know how to name it correctly. To
build a multi-model database from a multi-MSA flatfile, the alignments have to be in Stockholm format (no
other MSA format that I'm aware of supports having more than one alignment per file), and each alignment
must have a name on a #=Gr 1D line.

But if you happen to have a Pfam seed alignment flatfile pfam-a.seed around, an example command
would be:

> hmmbuild Pfam—A.hmm Pfam-A.seed

This would take about two or three hours to build all 10,000 models or so in Pfam. To speed the database
construction process up, hmmbui1d supports MPI parallelization.

As far as HMMER’s concerned, all you have to do is add --mpi to the command line for hmmbuiid,
assuming you’ve compiled support for MPl into it (see the installation instructions). You'll also need to know
how to invoke an MPI job in your particular environment, with your job scheduler and MPI distribution. We
can't really help you with this — different sites have different cluster environments.

With our scheduler (SGE, the Sun Grid Engine) and our MPI distro (Intel MPI), an example incantation
for building pfam. hmm from pfam-A. seed is:

> gsub -N hmmbuild -j y -o errors.out -b y -cwd -V -pe impi 128
‘mpirun -np 128 ./hmmbuild --mpi Pfam.hmm Pfam-A.seed > hmmbuild.out’
This reduces the time to build all of Pfam to about 40 seconds.

Step 2: compress and index the flatfile with hmmpress

The hmmscan program has to read a lot of profile HMMs in a hurry, and HMMER’s ASCI! flatfiles are bulky.
To accelerate this, hmmscan uses binary compression and indexing of the flatfiles. To use hmmscan, you
must first compress and index your HMM database with the hmmpress program:

> hmmpress minifam

This will quickly produce:

Working. .. done.

Pressed and indexed 3 HMMs (3 names and 2 accessions).
Models pressed into binary file: minifam.h3m
SSI index for binary model file: minifam.h31i

Profiles (MSV part) pressed into: minifam.h3f
Profiles (remainder) pressed into: minifam.h3p

and you'll see these four new binary files in the directory.

The tutorial/minifam example has already been pressed, so there are example binary files
tutorial/minifam.h3{m, i, £,p} included in the tutorial.

Their format is “proprietary”, which is an open source term of art that means both “I haven’t found time
to document them yet” and “I still might decide to change them arbitrarily without telling you”.

Step 3: search the HMM database with hmmscan

Now we can analyze sequences using our HMM database and hmmscan.

For example, the receptor tyrosine kinase 7.ess_DroME not only has all those fibronectin type Il domains
on its extracellular face, it's got a protein kinase domain on its intracellular face. Our minifam database has
models of both £n3 and pkinase, as well as the unrelated globins4 model. So what happens when we
scan the 7LESS_DROME sequence:

> hmmscan minifam tutorial/7LESS _DROME

34

The header and the first section of the output will look like:

hmmscan :: search sequence(s) against a profile database
HMMER 3.1 (February 2013); http://hmmer.org/
Copyright (C) 2011 Howard Hughes Medical Institute.
Freely distributed under the GNU General Public License (GPLv3).

query sequence file: 7LESS_DROME
target HMM database: minifam
per-seq hits tabular output: 7TLESS.tbl
per-dom hits tabular output: 7LESS.domtbl

Query: 7LESS_DROME [L=2554]
Accession: P13368
Description: RecName: Full=Protein sevenless; EC=2.7.10.1;
Scores for complete sequence (score includes all domains):
—-—-- full sequence —-- -—— best 1 domain --- —#dom—
E-value score Dbias E-value score Dbias exp N Model Description

5.6e-57 178.0 0.4 3.5e-16 47.2 0.9
l.1e-43 137.2 0.0 1.7e-43 136.5 0.0

4 9 fn3 Fibronectin type III domain
.3 1 Pkinase Protein kinase domain

The output fields are in the same order and have the same meaning as in hmmsearch’s output.

The size of the search space for hmmscan is the number of models in the HMM database (here, 3;
for a Pfam search, on the order of 10000). In hmmsearch, the size of the search space is the number of
sequences in the sequence database. This means that E-values may differ even for the same individual
profile vs. sequence comparison, depending on how you do the search.

For domain, there then follows a domain table and alignment output, just as in hmmsearch. The £n3
annotation, for example, looks like:

Domain annotation for each model (and alignments):
>> fn3 Fibronectin type III domain

score Dpias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc
12 -1.3 0.0 0.33 0.5 61 74 .. 396 409 .. 395 411 .. 0.85
2! 40.7 0.0 2.6e-14 3.8e-14 2 84 .. 439 520 .. 437 521 .. 0.95
3! 14.4 0.0 4.1le-06 6.1e-06 13 85 .. 836 913 .. 826 914 .. 0.73
4! 5.1 0.0 0.0032 0.0048 10 36 .. 1209 1235 .. 1203 1259 .. 0.82
5 ! 24.3 0.0 3.4e-09 5e-09 14 80 .. 1313 1380 .. 1304 1386 .. 0.82
6 2 0.0 0.0 0.13 0.19 58 72 .. 1754 1768 .. 1739 1769 .. 0.89
7! 47.2 0.9 2.3e-16 3.5e-16 1 85 [. 1799 1890 .. 1799 1891 .. 0.91
8 ! 17.8 0.0 3.7e-07 5.5e-07 6 74 .. 1904 1966 .. 1901 1976 .. 0.90
9 ! 12.8 0.0 1.3e-05 2e-05 1 86 [] 1993 2107 .. 1993 2107 .. 0.89

and an example alignment (of that second domain again):

== domain 2 score: 40.7 bits; conditional E-value: 2.6e-14
———CEEEEEEECTTEEEEEEE--S--SS—-—-SEEEEEEEETTTCCGCEEEEEETTTSEEEEES--TT-EEEEEEEEEETTEE-E CS
fn3 2 saPenlsvsevtstsltlsWsppkdgggpitgYeveygekgegeewgevtvprtttsvtltglepgteYefrVgavngagegp 84
saP ++ + ++ 1 ++W p + +gpit+gY¥++++++++++ + e+ vpt s+ +++L++gt+Y++ + +nt++gegp
7LESS_DROME 439 SAPVIEHLMGLDDSHLAVHWHPGRFTNGPIEGYRLRLSSSEGNA-TSEQLVPAGRGSYIFSQLQAGTNYTLALSMINKQGEGP 520

7899990990000k kkhkkkhhkkkhhkhhkkkhkhkkkkhkk k%9008 | Ak hkkkhkhhkkhkhkkkhkhkkkkhkkkkhkkkkkkxx*kx*xx 9997 PP

You'd think that except for the E-values (which depend on database search space sizes), you should get
exactly the same scores, domain number, domain coordinates, and alignment every time you do a search
of the same HMM against the same sequence. And this is actually the case — but in fact, it's actually not
so obvious this should be so, and HMMER is going out of its way to make it so. HMMER uses stochastic
sampling algorithms to infer some parameters, and also to infer the exact domain number and domain
boundaries in certain difficult cases. If HMMER ran its stochastic samples “properly”, it would see different
samples every time you ran a program, and all of you would complain to me that HMMER was weird and
buggy because it gave different answers on the same problem. To suppress run-to-run variation, HMMER
seeds its random number generator(s) identically every time you do a sequence comparison. If you’re an
expert, and you really want to see the proper stochastic variation that results from any sampling algorithms
that got run, you can pass a command-line argument of --seed 0 to programs that have this property
(hmmbuild and the four search programs).

35

Creating multiple alignments with hmmalign

The file tutorial/globins45. fa is @ FASTA file containing 45 unaligned globin sequences. To align all of
these to the globins4 model and make a multiple sequence alignment:
> hmmalign globins4.hmm tutorial/globins45.fa
The output of this is a Stockholm format multiple alignment file. The first few lines of it look like:

STOCKHOLM 1.0

MYG_ESCGI .—VLSDAEWQLVLNIWAKVEADVAGHGQDILIRLFKGHPETLEKFDKFKH
#=GR MYG_ESCGI PP . .00 %kkkrhkhhrhkhhhhhhkhhhkhkrhkkkhokkhkkkkkhkkxhkkrkkkxk
MYG_HORSE g——LSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKH
#=GR MYG_HORSE PP 8. .80 %kkkkkhkhhkhhhkhkhkhhhkkhkhkkk k kA kXXX KKK AK KA KA KA Kk
MYG_PROGU g——-LSDGEWQLVLNVWGKVEGDLSGHGQEVLIRLFKGHPETLEKFDKFKH
#=GR MYG_PROGU PP 8..89%%kkkkkkkkkhkkhkhhkkkkkkkkkkokkokkokkokkokkkkkkkkkkk
MYG_SAISC g——LSDGEWQLVLNIWGKVEADIPSHGQEVLISLFKGHPETLEKFDKFKH
#=GR MYG_SATSC PP 8. .80k %k kokokskkokokkkokokkkokkkkkokkkkokkhkhkkkkkkkkkkkkkkkk
MYG_LYCPI g—-LSDGEWQIVLNIWGKVETDLAGHGQEVLIRLFKNHPETLDKFDKFKH
#=GR MYG_LYCPI PP 8. . 80 % ks sk ok sk k sk k ok ok k k ok ok kK kK kK kK kK kK ok Kk Kk Kk ko ko kK ok ok ok ok
MYG_MOUSE g——-LSDGEWQLVLNVWGKVEADLAGHGQEVLIGLFKTHPETLDKFDKFKN
#=GR MYG_MOUSE PP 8. .80%kkkhkkkhokkkhkkkhkokkkhokkkhokkkkhkkkkhkhkhkhkkkkkkxk
MYG_MUSAN Vo————— DWEKVNSVWSAVESDLTAIGONILLRLFEQYPESQNHEFPKEKN
and so on.

First thing to notice here is that hmmalign uses both lower case and upper case residues, and it uses
two different characters for gaps. This is because there are two different kinds of columns: “match” columns
in which residues are assigned to match states and gaps are treated as deletions relative to consensus,
and “insert” columns where residues are assigned to insert states and gaps in other sequences are just
padding for the alignment to accomodate those insertions. In a match column, residues are upper case,
and a ’-’ character means a deletion relative to the consensus. In an insert column, residues are lower
case, and a’’ is padding. A ’-’ deletion has a cost: transition probabilities were assessed, penalizing the
transition into and out of a deletion. A’ pad has no cost per se; instead, the sequence(s) with insertions
are paying transition probabilities into and out of their inserted residue.

This notation is only for your convenience in output files: you can see the structure of the profile HMM
reflected in the pattern of residues and gap characters 7. In input files, in most alignment formats® HMMER
is case-insensitive, and it does not distinguish between different gap characters: -’ (dash), .’ (period), or
even’_’ (underscore) are accepted as gap characters.

Important: insertions in a profile HMM are unaligned. Suppose one sequence has an insertion of length
10 and another has an insertion of length 2 in the same place in the profile. The alignment will show ten
insert columns, to accomodate the longest insertion. The residues of the shorter insertion are thrown down
in an arbitrary order. (If you must know: by arbitrary HMMER convention, the insertion is divided in half;
half is left-justified, and the other half is right-justified, leaving ’” characters in the middle.) Notice that in
the previous paragraph we oh-so-carefully said residues are “assigned” to a state, not “aligned”. For match
states, assigned and aligned are the same thing: a one-to-one correspondence between a residue and a
consensus match state in the model. But there may be one or more residues assigned to the same insert
state.

Don’t be confused by the unaligned nature of profile HMM insertions. You're sure to see cases where
lower-case inserted residues are “obviously misaligned”. This is just because HMMER isn’t trying to “align”
them in the first place: it is assigning them to unaligned insertions.

Enough about the sequences in the alignment. Now notice all those pp annotation lines. That’s posterior
probability annotation, as in the single sequence alignments that hmmscan and hmmsearch showed. This
essentially represents the confidence that each residue is assigned where it should be.

7By default, hmmalign removes any columns that are all deletion characters, so the number of apparent match columns in a
displayed alignment is < the actual number of match states in the profile. To prevent this trimming and see columns for all match
states, use the ——allcol option. This can be helpful if you're writing some postprocessor that'’s trying to keep track of what columns
are assigned to what match states in the profile.

8A2M format is the exception.

36

Again, that’s “assigned”, not “aligned”. The posterior probability assigned to an inserted residue is the
probability that it is assigned to the insert state that corresponds to that column. Because the same insert
state might correspond to more than one column, the probability on an insert residue is not the probability
that it belongs in that particular column; again, where there’s a choice of column for inserted residues, that
choice is arbitrary.

The program hmmalign currently has a “feature” that we're aware of. Recall that HMMER only does local
alignments. Here, we know that we’ve provided full length globin sequences, and globins4 is a full length
globin model. We’d probably like hmmalign to produce a global alignment. It can’t currently do that. If it
doesn’t quite manage to extend its local alignment to the full length of a target globin sequence, you’ll get
a weird-looking effect, as the nonmatching termini are pulled out to the left or right. For example, look at
the N-terminal g in Myc_HORSE above. HMMER is about 80% confident that this residue is nonhomologous,
though any sensible person would align it into the first globin consensus column.

Look at the end of that first block of Stockholm alignment, where you'll see:

HBBL_RANCA v-HWTAEEKAVINSVWQKV--DVEQDGHEALTRLFIVYPWTQRYEFSTEGD
#=GR HBBL_RANCA PP 6.6799 %%k kkkkkkkhkkk . , kkokkkkkkokkokkokkokkokkokkkkkkkkkxk
HBB2_TRICR .VHLTAEDRKEIAAILGKV--NVDSLGGQCLARLIVVNPWSRRYFHDFGD
#=GR HBB2_TRICR PP .69% %k kkkkkkokkokkokkk . . %k ok kokkokkokkokkkk kK kK kokkok &k ok k% kk
#=GC PP_cons BT Dk ok k kK ok ok k kK ok k ok Kk ok k kK ok ok kK K ok k kK ok ok k kK ok ok kK k ok k Kk ok kK

#=GC RF

The #=Gc pP_cons line is Stockholm-format consensus posterior probability annotation for the entire
column. It’s calculated simply as the arithmetic mean of the per-residue posterior probabilities in that col-
umn. This should prove useful in phylogenetic inference applications, for example, where it's common to
mask away nonconfidently aligned columns of a multiple alignment. The pp_cons line provides an objective
measure of the confidence assigned to each column.

The #=cc R line is Stockholm-format reference coordinate annotation, with an x marking each column
that the profile considered to be consensus.

37

4 The HMMER profile/sequence comparison pipeline

In this section, we briefly outline the processing pipeline for a single profile/sequence comparison.! This
should help give you a sense of what HMMER is doing under the hood, what sort of mistakes it may make
(rarely, of course!), and what the various results in the output actually mean. We’'ll first describe the pipeline
in the context of protein search (phmmer, hmmsearch, hmmscan, jackhmmer), then wrap back around to
discuss the modified pipeline used in nhmmer and nhmmscan.

In briefest outline, the comparison pipeline takes the following steps:

Null model. Calculate a score term for the “null hypothesis” (a probability model of non-homology). This
score correction is used to turn all subsequent profile/sequence bit scores into a final log-odds bit
score.

MSV filter. The main acceleration heuristic. The MSV (“Multiple Segment Viterbi”) algorithm looks for one
or more high-scoring ungapped alignments. If the MSV score passes a set threshold, the entire
sequence passes on to the next pipeline step; else it is rejected.

Bias filter. A hack that reduces false positive MSV hits due to biased composition sequences. A two-
state HMM is constructed from the mean residue composition of the profile and the standard residue
composition of the null model, and used to score the sequence. The MSV bit score is corrected using
this as a second null hypothesis. If the MSV score still passes the MSV threshold, the sequence
passes on to the next step; else it is rejected. The bias filter score correction will also be applied to
the Viterbi filter and Forward filter scores that follow.

Viterbi filter. A more stringent accelerated filter. An optimal (maximum likelihood) gapped alignment score
is calculated. If this score passes a set threshold, the sequence passes to the next step; else it is
rejected.

Forward filter/parser. The full likelihood of the profile/sequence comparison is evaluated, summed over
the entire alignment ensemble, using the HMM Forward algorithm. This score is corrected to a bit
score using the null model and bias filter scores. If the bit score passes a set threshold, the sequence
passes on to the next step; else it is rejected.

Domain identification. Using the Forward parser results, now combined with a Backward parser, poste-
rior probabilities of domain locations are calculated. A discrete set of putative domains (alignments)
is identified by applying heuristics to posterior probabilities. This procedure identifies envelopes: sub-
sequences on the target sequence which contain a lot of probability mass for a match to the profile.

Alignment. For each identified domain, a full Forward/Backward algorithm is performed. An ad hoc “null2”
hypothesis is constructed for each domain’s composition and used to calculate a biased composition
score correction. A maximum expected accuracy (MEA) alignment is calculated. This identifies one
MEA alignment within each envelope.

Storage. Now we have a sequence score (and P-value); the sequence contains one or more domains,
each of which has a domain score (and P-value), and each domain has an MEA alignment annotated
with per-residue posterior probabilities.

In more detail, each step is described in subsections that follow. Even more detail may be found in
(Eddy, 2011).

TCode gurus and masochists: you can follow along in src/p7_pipeline.c.

38

Null model.

The “null model” calculates the probability that the target sequence is not homologous to the query profile.
A HMMER bit score is the log of the ratio of the sequence’s probability according to the profile (the homology
hypothesis) over the null model probability (the non-homology hypothesis).

The null model is a one-state HMM configured to generate “random” sequences of the same mean length
L as the target sequence, with each residue drawn from a background frequency distribution (a standard
i.i.d. model: residues are treated as independent and identically distributed). Currently, this background
frequency distribution is hardcoded as the mean residue frequencies in Swiss-Prot 50.8 (October 2006).

For technical reasons, HMMER incorporates the residue emission probabilities of the null model directly
into the profile, by turning each emission probability in the profile into an odds ratio. The null model score
calculation therefore is only concerned with accounting for the remaining transition probabilities of the null
model and toting them up into a bit score correction. The null model calculation is fast, because it only
depends on the length of the target sequence, not its sequence.

MSYV filter.

The sequence is aligned to the profile using a specialized model that allows multiple high-scoring local
ungapped segments to match. The optimal alignment score (Viterbi score) is calculated under this multi-
segment model, hence the term MSYV, for “multi-segment Viterbi”. This is HMMER’s main speed heuristic.

The MSV score is comparable to BLAST’s sum score (optimal sum of ungapped alignment segments).
Roughly speaking, MSV is comparable to skipping the heuristic word hit and hit extension steps of the
BLAST acceleration algorithm.

The MSV filter is very, very fast. In addition to avoiding indel calculations in the dynamic programming
table, it uses reduced precision scores scaled to 8-bit integers, enabling acceleration via 16-way parallel
SIMD vector instructions.

The MSV score is a true log-odds likelihood ratio, so it obeys conjectures about the expected score
distribution (Eddy, 2008) that allow immediate and accurate calculation of the statistical significance (P-
value) of the MSV bit score.

By default, comparisons with a P-value of < 0.02 pass this filter, meaning that about 2% of nonhomol-
ogous sequences are expected to pass. You can use the --F1 <x> option to change this threshold. For
example, --F1 <0.05> would pass 5% of the comparisons, making a search more sensitive but slower.
Setting the threshold to > 1.0 (--F1 99 for example) assures that all comparisons will pass. Shutting off
the MSV filter may be worthwhile if you want to make sure you don’t miss comparisons that have a lot of
scattered insertions and deletions. Alternatively, the --max option causes the MSV filter step (and all other
filter steps) to be bypassed.

The MSV bit score is calculated as a log-odds score using the null model for comparison. No correction
for a biased composition or repetitive sequence is done at this stage. For comparisons involving biased
sequences and/or profiles, more than 2% of comparisons will pass the MSV filter. At the end of search
output, there is a line like:

Passed MSV filter: 107917 (0.020272); expected 106468.8 (0.02)

which tells you how many and what fraction of comparisons passed the MSV filter, versus how many
(and what fraction) were expected.

Biased composition filter.

It's possible for profiles and/or sequences to have biased residue compositions that result in “significant”
log-odds bit scores not because the profile matches the sequence particularly well, but because the null
model matches the sequence particularly badly.

39

HMMER uses fairly good methods to compensate its scores for biased composition, but these methods
are computationally expensive and applied late in the pipeline (described below).

In a few cases, profiles and/or target sequences are sufficiently biased that too many comparisons pass
the MSV filter, causing HMMER speed performance to be severely degraded. Although the final scores
and E-values at the end of the pipeline will be calculated taking into account a “null2” model of biased
composition and simple repetition, the null2 model is dependent on a full alignment ensemble calculation
via the Forward/Backward algorithm, making it computationally complex, so it won’t get calculated until
the very end. The treatment of biased composition comparisons is probably the most serious problem
remaining in HMMER. Solving it well will require more research. As a stopgap solution to rescuing most of
the speed degradation while not sacrificing too much sensitivity, an ad hoc biased composition filtering step
is applied to remove highly biased comparisons.

On the fly, a two-state HMM is constructed. One state emits residues from the background frequency
distribution (same as the null1 model), and the other state emits residues from the mean residue composi-
tion of the profile (i.e. the expected composition of sequences generated by the core model, including match
and insert states [p7_hmm.c:p7_hmm_SetComposition ()]). Thus if the profile is highly biased (cysteine-rich,
for example; or highly hydrophobic with many transmembrane segments), this composition bias will be cap-
tured by this second state. This model’s transitions are arbitrarily set such that state 1 emits an expected
length of 400 at a time, and state 2 emits an expected length of M/8 at a time (for a profile of length M). An
overall target sequence length distribution is set to a mean of L, identical to the null1 model.

The sequence is then rescored using this “bias filter model” in place of the nulli model, using the HMM
Forward algorithm. (This replaces the null1 model score at all subsequent filter steps in the pipeline, until a
final Forward score is calculated.) A new MSV bit score is obtained.

If the P-value of this still satisfies the MSV thresholds, the sequence passes the biased composition
filter.

The --F1 <x> option controls the P-value threshold for passing the MSV filter score, both before (with
the simple nulll model) and after the bias composition filter is applied.

The --max option bypasses all filters in the pipeline, including the bias filter.

The --nobias option turns off (bypasses) the biased composition filter. The simple null model is used
as a null hypothesis for MSV and in subsequent filter steps. The biased composition filter step compromises
a small amount of sensitivity. Though it is good to have it on by default, you may want to shut it off if you
know you will have no problem with biased composition hits.

At the end of a search output, you will see a line like:

Passed bias filter: 105665 (0.019849); expected 106468.8 (0.02)

which tells you how many and what fraction of comparisons passed the biased composition filter, versus
how many were expected. (If the filter was turned off, all comparisons pass.)

Viterbi filter.

The sequence is now aligned to the profile using a fast Viterbi algorithm for optimal gapped alignment.

This Viterbi implementation is specialized for speed. It is implemented in 8-way parallel SIMD vector
instructions, using reduced precision scores that have been scaled to 16-bit integers. Only one row of the
dynamic programming matrix is stored, so the routine only recovers the score, not the optimal alignment
itself. The reduced representation has limited range; local alignment scores will not underflow, but high
scoring comparisons can overflow and return infinity, in which case they automatically pass the filter.

The final Viterbi filter bit score is then computed using the appropriate null model log likelihood (by
default the biased composition filter model score, or if the biased filter is off, just the null model score). If
the P-value of this score passes the Viterbi filter threshold, the sequence passes on to the next step of the
pipeline.

The --r2 <x> option controls the P-value threshold for passing the Viterbi filter score. The default is
0.001. The --max option bypasses all filters in the pipeline.

At the end of a search output, you will see a line like:

40

Passed Vit filter: 2207 (0.00443803); expected 497.3 (0.001)

which tells you how many and what fraction of comparisons passed the Viterbi filter, versus how many
were expected.

Forward filter/parser.

The sequence is now aligned to the profile using the full Forward algorithm, which calculates the likelihood
of the target sequence given the profile, summed over the ensemble of all possible alignments.

This is a specialized time- and memory-efficient Forward implementation called the “Forward parser”. It
is implemented in 4-way parallel SIMD vector instructions, in full precision (32-bit floating point). It stores
just enough information that, in combination with the results of the Backward parser (below), posterior
probabilities of start and stop points of alignments (domains) can be calculated in the domain definition
step (below), although the detailed alignments themselves cannot be.

The Forward filter bit score is calculated by correcting this score using the appropriate null model log
likelihood (by default the biased composition filter model score, or if the biased filter is off, just the null model
score). If the P-value of this bit score passes the Forward filter threshold, the sequence passes on to the
next step of the pipeline.

The bias filter score has no further effect in the pipeline. It is only used in filter stages. It has no effect
on final reported bit scores or P-values. Biased composition compensation for final bit scores is done by a
more complex domain-specific algorithm, described below.

The --rF3 <x> option controls the P-value threshold for passing the Forward filter score. The default is
1e-5. The —-max option bypasses all filters in the pipeline.

At the end of a search output, you will see a line like:

Passed Fwd filter: 1076 (0.00216371); expected 5.0 (le-05)

which tells you how many and what fraction of comparisons passed the Forward filter, versus how many
were expected.

Domain definition.

A target sequence that reaches this point is very likely to contain one or more significant matches to the
profile. These matches are referred to as “domains”, since the main use of HMMER has historically been to
match profile HMMs from protein domain databases like Pfam, and one of HMMER’s strengths is to be able
to cleanly parse a multidomain target sequence into its multiple nonoverlapping hits to the same domain
model.

The domain definition step is essentially its own pipeline, with steps as follows:?

Backward parser. The counterpart of the Forward parser algorithm is calculated in an analogous time-
and memory-efficient implementation. The Forward algorithm gives the likelihood of all prefixes of the
target sequence, summed over their alignment ensemble, and the Backward algorithm gives the likelihood
of all suffixes. For any given point of a possible model state/residue alignment, the product of the Forward
and Backward likelihoods gives the likelihood of the entire alignment ensemble conditional on using that
particular alignment point. Thus, we can calculate things like the posterior probability that an alignment
starts or ends at a given position in the target sequence.

2Code gurus and masochists can follow along in src/p7_domaindef. c.

41

Domain decoding. The posterior decoding algorithm is applied, to calculate the posterior probability of
alignment starts and ends (profile B and E state alignments) with respect to target sequence position.

The sum of the posterior probabilities of alignment starts (B states) over the entire target sequence is
the expected number of domains in the sequence.

In a tabular output (--tb1out) file, this number is in the column labeled exp.

Region identification. A heuristic is now applied to identify a non-overlapping set of “regions” that contain
significant probability mass suggesting the presence of a match (alignment) to the profile.

For each region, the expected number of domains is calculated (again by posterior decoding on the
Forward/Backward parser results). This number should be about 1: we expect each region to contain one
local alignment to the profile.

In a tabular output (--tblout) file, the number of discrete regions identified by this posterior decoding
step is in the column labeled reg. It ought to be almost the same as the expectation exp. If it is not,
there may be something funny going on, like a tandem repetitive element in the target sequence (which
can produce so many overlapping weak hits that the sequence appears to be a significant hit with lots of
domains expected somewhere, but the probability is fuzzed out over the repetitive region and few or no
good discrete alignment regions can be identified).

Envelope identification. Now, within each region, we will attempt to identify envelopes. An envelope is a
subsequence of the target sequence that appears to contain alignment probability mass for a likely domain
(one local alignment to the profile).

When the region contains ~1 expected domain, envelope identification is already done: the region’s
start and end points are converted directly to the envelope coordinates of a putative domain.

There are a few cases where the region appears to contain more than one expected domain — where
more than one domain is closely spaced on the target sequence and/or the domain scores are weak and
the probability masses are ill-resolved from each other. These “multidomain regions”, when they occur, are
passed off to an even more ad hoc resolution algorithm called stochastic traceback clustering. In stochastic
traceback clustering, we sample many alignments from the posterior alignment ensemble, cluster those
alignments according to their overlap in start/end coordinates, and pick clusters that sum up to sufficiently
high probability. Consensus start and end points are chosen for each cluster of sampled alignments. These
start/end points define envelopes.

These envelopes identified by stochastic traceback clustering are not guaranteed to be nonoverlapping.
It's possible that there are alternative “solutions” for parsing the sequence into domains, when the correct
parsing is ambiguous. HMMER will report all high-likelihood solutions, not just a single nonoverlapping
parse.

It's also possible (though rare) for stochastic clustering to identify no envelopes in the region.

In a tabular output (--tb1out) file, the number of regions that had to be subjected to stochastic traceback
clustering is given in the column labeled c1u. This ought to be a small number (often it's zero). The number
of envelopes identified by stochastic traceback clustering that overlap with other envelopes is in the column
labeled ov. If this number is non-zero, you need to be careful when you interpret the details of alignments
in the output, because HMMER is going to be showing overlapping alternative solutions. The total number
of domain envelopes identified (either by the simple method or by stochastic traceback clustering) is in the
column labeled env. It ought to be almost the same as the expectation and the number of regions.

Maximum expected accuracy alignment. Each envelope is now aligned to the profile using the full
Forward/Backward algorithm. The profile is configured to “unihit” mode, so that the profile expects only one
local alignment (domain) in the envelope (as opposed to multiple domains). Posterior decoding is used
to calculate the posterior probability of every detailed alignment of profile state to sequence residue. The
posterior decodings are used to extract a “maximum expected accuracy” alignment. Each aligned residue
is annotated with its posterior probability in the Forward/Backward alignment ensemble.

42

Currently, the Forward, Backward, and posterior decoding calculations at this step are not memory
efficient. They calculate matrices requiring roughly 36 M L bytes, where M is the profile length and L is the
length of the envelope subsequence. Usually in hmmsearch and hmmscan, profiles and envelopes are small
enough that this is not a problem. For example, a typical Pfam domain model is about 200 residues long,
matching to individual target envelopes of about 200 residues each; this requires about 1.4 MB of memory
in MEA alignment. However, in phmmer and jackhmmer programs, it's often going to be the case that you're
aligning an entire query sequence to an entire target sequence in a single unresolved “domain” alignment.
If this is titin (about 40,000 residues), it would require 57.6 GB of RAM. For this reason, currently, phmmer
and jackhmmer can only handle query sequences of up to a few thousand residues. If you see a “fatal
exception” error complaining about failure of a large memory allocation, you're almost certainly seeing a
prohibitive memory requirement at this stage.>

In a tabular output (--tb1out) file, the number of domains in envelopes (before any significance thresh-
olding) is in the column labeled dom. This will generally be the same as the number of envelopes.

Biased composition score correction (“null2”) An ad hoc biased composition score correction is calcu-
lated for each envelope, using the posterior decoding. A corrected bit score and P-value for each envelope
is calculated. These null2-corrected scores are subjected to the reporting and inclusion thresholds, at both
the full sequence level and per-domain.

Modifications to the pipeline as used for DNA search.
SSV, not MSV.

In the MSV filter, one or more high-scoring ungapped segments contribute to a score that, if sufficiently high,
casues the entire sequence to be passed on to the next stage (the bias filter). This strategy won’t work for
long DNA sequences; it doesn't filter the human genome much to say “there’s a hit on chromosome 1,
now process the whole thing”. In the scanning-SSV (“Single ungapped Segment Viterbi”) algorithm used in
nhmmer and nhmmscan, each comparison between a query and target is scanned for high-scoring ungapped
alignment segments, and a window around each such segment is extracted, merging overlapping windows.
Each window is then passed on to the remaining filter cascade, where it is (for the most part) treated as
described above. As with the MSYV filter, the default P-value threshold is 0.02, and can be controlled with
the —--r1 flag.

The --max flag also controls the amount of the sequence database that passes the SSV filter, but instead
of the threshold being set to 1.0, as described for the protein pipeline, it is set to 0.4.

There are no domains, but there are envelopes.

In HMMER’s protein-search programs, multiple matches of the model to a target sequence are treated as
domains contained within a single hit for that sequence. In the DNA-search programs, each match of the
model to a subsequence is treated as an independent hit - there’s no notion of a domain. This is largely a
difference in reporting; both pipelines rely on essentially the same envelope detection code; envelopes lead
to domains in protein search, and hits in DNA search.

Biased composition.

DNA sequence is littered with regions containing tandem simple repeats or other low complexity sequence.
Without accounting for such composition bias, we see many cases in which one part of a hit is obviously
legitimate, and serves as the anchor for a neighboring alignment segment that is clearly low-complexity
garbage, one form of a problem known as homologous overextension (Gonzalez and Pearson, 2010). The

3We know how to fix this, with memory-efficient algorithms, and are working on it.

43

null2 method used in protein search delays score modification until after the alignment is complete, but we
know that this kind of overextension can be (mostly) avoided if the model’s log odds scores account for the
composition bias of the target region while constructing the alignment. The DNA search pipeline therefore
does just this: it modifies the scoring scheme for each target envelope as a function of that envelope’s
sequence composition, then builds the alignment according to that scheme.

44

5

Tabular output formats

The target hits table

The --tblout output option produces the target hits table. The target hits table consists of one line for
each different query/target comparison that met the reporting thresholds, ranked by decreasing statistical
significance (increasing E-value).

tblout fields for protein search programs In the protein search programs, each line consists of 18
space-delimited fields followed by a free text target sequence description, as follows:’

(1)
(2)
(3)
(4)
(5)

(6)

(7)

(8)

(9)

target name: The name of the target sequence or profile.

accession: The accession of the target sequence or profile, or ’-’ if none.
query name: 1he name of the query sequence or profile.

accession: The accession of the query sequence or profile, or - if none.

E-value (full sequence): The expectation value (statistical significance) of the target. This is a per
query E-value; i.e. calculated as the expected number of false positives achieving this comparison’s
score for a single query against the Z sequences in the target dataset. If you search with multiple
queries and if you want to control the overall false positive rate of that search rather than the false
positive rate per query, you will want to multiply this per-query E-value by how many queries you're
doing.

score (full sequence): The score (in bits) for this target/query comparison. It includes the biased-
composition correction (the “null2” model).

Bias (full sequence): The biased-composition correction: the bit score difference contributed by
the null2 model. High bias scores may be a red flag for a false positive, especially when the bias score
is as large or larger than the overall bit score. It is difficult to correct for all possible ways in which a
nonrandom but nonhomologous biological sequences can appear to be similar, such as short-period
tandem repeats, so there are cases where the bias correction is not strong enough (creating false
positives).

E-value (best 1 domain): The E-value if only the single best-scoring domain envelope were found

in the sequence, and none of the others. If this E-value isn’t good, but the full sequence E-value
is good, this is a potential red flag. Weak hits, none of which are good enough on their own, are
summing up to lift the sequence up to a high score. Whether this is Good or Bad is not clear; the
sequence may contain several weak homologous domains, or it might contain a repetitive sequence
that is hitting by chance (i.e. once one repeat hits, all the repeats hit).

score (best 1 domain): The bit score if only the single best-scoring domain envelope were found
in the sequence, and none of the others. (Inclusive of the null2 bias correction.]

(10) bias (best 1 domain): The null2 bias correction that was applied to the bit score of the single

best-scoring domain.

(11) exp: Expected number of domains, as calculated by posterior decoding on the mean number of

begin states used in the alignment ensemble.

"The tblout format is deliberately space-delimited (rather than tab-delimited) and justified into aligned columns, so these files
are suitable both for automated parsing and for human examination. Tab-delimited data files are difficult for humans to examine and
spot check. For this reason, we think tab-delimited files are a minor evil in the world. Although we occasionally receive shrieks of
outrage about this, we stubbornly feel that space-delimited files are just as trivial to parse as tab-delimited files.

45

(12)

(13)

(14)

(13)

(16)

(17)

(18)

(19)

reg: Number of discrete regions defined, as calculated by heuristics applied to posterior decoding
of begin/end state positions in the alignment ensemble. The number of regions will generally be close
to the expected number of domains. The more different the two numbers are, the less discrete the
regions appear to be, in terms of probability mass. This usually means one of two things. On the one
hand, weak homologous domains may be difficult for the heuristics to identify clearly. On the other
hand, repetitive sequence may appear to have a high expected domain number (from lots of crappy
possible alignments in the ensemble, no one of which is very convincing on its own, so no one region
is discretely well-defined).

clu: Number of regions that appeared to be multidomain, and therefore were passed to stochastic
traceback clustering for further resolution down to one or more envelopes. This number is often zero.

ov: For envelopes that were defined by stochastic traceback clustering, how many of them overlap
other envelopes.

env: The total number of envelopes defined, both by single envelope regions and by stochastic
traceback clustering into one or more envelopes per region.

dom: Number of domains defined. In general, this is the same as the number of envelopes: for each
envelope, we find an MEA (maximum expected accuracy) alignment, which defines the endpoints of
the alignable domain.

rep: Number of domains satisfying reporting thresholds. If you've also saved a --domtblout file,
there will be one line in it for each reported domain.

inc: Number of domains satisfying inclusion thresholds.

description of target: The remainder of the line is the target’s description line, as free text.

tblout fields for DNA search programs In the DNA search programs, there is less concentration on
domains, and more focus on presenting the hit ranges. Each line consists of 15 space-delimited fields
followed by a free text target sequence description, as follows:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(13)

target name: The name of the target sequence or profile.

accession: The accession of the target sequence or profile, or -’ if none.

query name: [The name of the query sequence or profile.

accession: The accession of the query sequence or profile, or ’- if none.

hmmfrom: The position in the hmm at which the hit starts.

hmm to: The position in the hmm at which the hit ends.

alifrom: The position in the target sequence at which the hit starts.

ali to: The position in the target sequence at which the hit ends.

envfrom: The position in the target sequence at which the surrounding envelope starts.
env to: The position in the target sequence at which the surrounding envelope ends.
sq len: The length of the target sequence..
strand: The strand on which the hit was found (“-” when alifromy ali to).

E-value: The expectation value (statistical significance) of the target, as above.

46

(14) score (full sequence): The score (in bits) for this hit. It includes the biased-composition correc-
tion.

(15) Bias (full sequence): The biased-composition correction, as above

(16) description of target: The remainder of the line is the target’s description line, as free text.

These tables are columnated neatly for human readability, but do not write parsers that rely on this
columnation; rely on space-delimited fields. The pretty columnation assumes fixed maximum widths for
each field. If a field exceeds its allotted width, it will still be fully represented and space-delimited, but the
columnation will be disrupted on the rest of the row.

Note the use of target and query columns. A program like hmmsearch searches a query profile against
a target sequence database. In an hmmsearch tblout file, the sequence (target) name is first, and the profile
(query) name is second. A program like hmmscan, on the other hand, searches a query sequence against
a target profile database. In a hmmscan tblout file, the profile name is first, and the sequence name is
second. You might say, hey, wouldn’t it be more consistent to put the profile name first and the sequence
name second (or vice versa), sO hmmsearch and hmmscan tblout files were identical? Well, first of all,
they still wouldn’t be identical, because the target database size used for E-value calculations is different
(number of target sequences for hmmsearch, number of target profiles for hmmscan, and it's good not to
forget this. Second, what about programs like phmmer where the query is a sequence and the targets are
also sequences?

If the “domain number estimation” section of the protein table (exp, reg, clu, ov, env, dom, rep, inc)
makes no sense to you, it may help to read the previous section of the manual, which describes the HMMER
processing pipeline, including the steps that probabilistically define domain locations in a sequence.

The domain hits table (protein search only)

In protein search programs, the -—-domtblout option produces the domain hits table. There is one line for
each domain. There may be more than one domain per sequence. T